目录
前文列表
《用 C 语言开发一门编程语言 — 交互式解析器》
《用 C 语言开发一门编程语言 — 跨平台的可移植性》
《用 C 语言开发一门编程语言 — 语法解析器》
《用 C 语言开发一门编程语言 — 抽象语法树》
《用 C 语言开发一门编程语言 — 异常处理》
《用 C 语言开发一门编程语言 — S-表达式》
《用 C 语言开发一门编程语言 — Q-表达式》
《用 C 语言开发一门编程语言 — 变量元素设计》
《用 C 语言开发一门编程语言 — 基于 Lambda 表达式的函数设计》
条件分支
本文中,我们将介绍几种在 C 中经常用到的和条件判断有关的函数。包括:排序,等式,if 函数,递归函数等。
排序函数
我们将复用之前的 Number 数据类型来表示比较结果。 制定一个类似于 C 语言的条件分支规则:0 即 False,非 0 即 True。
因此,我们的排序函数有点像算术函数的简化版本。 排序函数仅仅能够处理数字。此外,我们希望函数只能适用于两个参数的情形。根据两个 lval 输入之间的相等比较返回一个数字为 0 或 1 的 lval。使用 C 语言的比较运算符可以做到这一点。与之前的算术函数一样,我们将使用单个函数来完成所有比较。
- 首先我们检查错误情形。
- 然后我们比较参数中的数字获得结果。
- 最后,我们将结果作为数字返回。
lval* builtin_gt(lenv* e, lval* a) {
return builtin_ord(e, a, ">");
}
lval* builtin_lt(lenv* e, lval* a) {
return builtin_ord(e, a, "<");
}
lval* builtin_ge(lenv* e, lval* a) {
return builtin_ord(e, a, ">=");
}
lval* builtin_le(lenv* e, lval* a) {
return builtin_ord(e, a, "<=");
}
lval* builtin_ord(lenv* e, lval* a, char* op) {
LASSERT_NUM(op, a, 2);
LASSERT_TYPE(op, a, 0, LVAL_NUM);
LASSERT_TYPE(op, a, 1, LVAL_NUM);
int r;
if (strcmp(op, ">") == 0) {
r = (a->cell[0]->num > a->cell[1]->num);
}
if (strcmp(op, "<") == 0) {
r = (a->cell[0]->num < a->cell[1]->num);
}
if (strcmp(op, ">=") == 0) {
r = (a->cell[0]->num >= a->cell[1]->num);
}
if (strcmp(op, "<=") == 0) {
r = (a->cell[0]->num <= a->cell[1]->num);
}
lval_del(a);
return lval_num(r);
}
等于函数
等于函数与排序函数有所不同,因为我们希望它不仅仅适用于数字类型。它还将用于判断输入是否为空列表,或者判断两个函数是否相同。因此我们需要定义一个用来检验两个不同类型 lval 变量是否相等的函数。
该函数实质上检查两个构成 lval 类型数据的所有字段是否相等。 若所有字段都相等,则两者被认为是相等的。 否则,若存在任何差异,则两者被认为是不相等的。
int lval_eq(lval* x, lval* y) {
/* Different Types are always unequal */
if (x->type != y->type) { return 0; }
/* Compare Based upon type */
switch (x->type) {
/* Compare Number Value */
case LVAL_NUM: return (x->num == y->num);
/* Compare String Values */
case LVAL_ERR: return (strcmp(x->err, y->err) == 0);
case LVAL_SYM: return (strcmp(x->sym, y->sym) == 0);
/* If builtin compare, otherwise compare formals and body */
case LVAL_FUN:
if (x->builtin || y->builtin) {
return x->builtin == y->builtin;
} else {
return lval_eq(x->formals, y->formals)
&& lval_eq(x->body, y->body);
}
/* If list compare every individual element */
case LVAL_QEXPR:
case LVAL_SEXPR:
if (x->count != y->count) { return 0; }
for (int i = 0; i < x->count; i++) {
/* If any element not equal then whole list not equal */
if (!lval_eq(x->cell[i], y->cell[i])) { return 0; }
}
/* Otherwise lists must be equal */
return 1;
break;
}
return 0;
}
使用该函数,可以非常简单地新增用于比较是否相等的内置函数。 我们仅需要保证输入为两个参数,检验它们是否相等,然后我们将比较结果存储到一个新的 lval 中并返回它。
lval* builtin_cmp(lenv* e, lval* a, char* op) {
LASSERT_NUM(op, a, 2);
int r;
if (strcmp(op, "==") == 0) {
r = lval_eq(a->cell[0], a->cell[1]);
}
if (strcmp(op, "!=") == 0) {
r = !lval_eq(a->cell[0], a->cell[1]);
}
lval_del(a);
return lval_num(r);
}
lval* builtin_eq(lenv* e, lval* a) {
return builtin_cmp(e, a, "==");
}
lval* builtin_ne(lenv* e, lval* a) {
return builtin_cmp(e, a, "!=");
}
if 函数
为了更好的使用比较运算符,我们需要新增 if 函数。 该函数有点像 C 语言中的三元运算。在条件为真时,它对一段代码求值,如果条件为假,则对另一段代码求值。
我们再次使用 Q-Expression 来对输入进行编码。 首先,我们让用户传入比较结果,然后我们让用户传入两个 Q-Expression,分别表示在条件结果为 True 或 False 时进行求值的代码。
lval* builtin_if(lenv* e, lval* a) {
LASSERT_NUM("if", a, 3);
LASSERT_TYPE("if", a, 0, LVAL_NUM);
LASSERT_TYPE("if", a, 1, LVAL_QEXPR);
LASSERT_TYPE("if", a, 2, LVAL_QEXPR);
/* Mark Both Expressions as evaluable */
lval* x;
a->cell[1]->type = LVAL_SEXPR;
a->cell[2]->type = LVAL_SEXPR;
if (a->cell[0]->num) {
/* If condition is true evaluate first expression */
x = lval_eval(e, lval_pop(a, 1));
} else {
/* Otherwise evaluate second expression */
x = lval_eval(e, lval_pop(a, 2));
}
/* Delete argument list and return */
lval_del(a);
return x;
}
剩下的就是让我们注册这些新增内置函数。
/* Comparison Functions */
lenv_add_builtin(e, "if", builtin_if);
lenv_add_builtin(e, "==", builtin_eq);
lenv_add_builtin(e, "!=", builtin_ne);
lenv_add_builtin(e, ">", builtin_gt);
lenv_add_builtin(e, "<", builtin_lt);
lenv_add_builtin(e, ">=", builtin_ge);
lenv_add_builtin(e, "<=", builtin_le);
递归函数
引入条件分支,实际上让我们的语言变得更加强大。 因为条件分支可以有效地让我们实现递归函数。递归函数是那些自己调用自己的函数。 我们已经在 C 中使用这些来执行表达式的读取和求值。 我们需要条件分支的原因是因为它们让我们检验我们想要终止递归的情况。
例如,我们可以使用条件分支来实现一个函数 len,该函数返回列表中元素个数。 如果我们遇到空列表,我们只返回 0。 否则我们返回输入列表的 tail 的长度加上 1。 它重复调用 len 函数,直到遇到空列表。 此时它返回 0 并将所有其他部分结果加在一起。
(fun {len l} {
if (== l {})
{0}
{+ 1 (len (tail l))}
})
就像在 C 中一样,递归函数具有令人愉悦的对称性。
首先,我们对空列表(基线条件)做一些处理。 然后,如果我们得到更大的列表,我们就会取出一个部分,例如列表的头部元素,并对它做一些处理,然后再将它与已经调用了该函数的其余部分进行组合。
这是另一个递归函数 —— 反转列表。和之前一样,函数检查列表是否空列表,但该函数中基线条件的处理是返回空列表。这是合理的,因为空列表的反转形式同样也是空列表。但如果是更大的列表,函数会使尾部反转,并将其放在头部前面。
(fun {reverse l} {
if (== l {})
{{}}
{join (reverse (tail l)) (head l)}
})
我们将使用递归来构建许多函数。 因为这将成为在我们的语言中实现循环的主要方式。
源代码
#include <stdio.h>
#include <stdlib.h>
#include "mpc.h"
#define LASSERT(args, cond, fmt, ...)
if (!(cond)) { lval* err = lval_err(fmt, ##__VA_ARGS__); lval_del(args); return err; }
#define LASSERT_TYPE(func, args, index, expect)
LASSERT(args, args->cell[index]->type == expect,
"Function '%s' passed incorrect type for argument %i. Got %s, Expected %s.",
func, index, ltype_name(args->cell[index]->type), ltype_name(expect))
#define LASSERT_NUM(func, args, num)
LASSERT(args, args->count == num,
"Function '%s' passed incorrect number of arguments. Got %i, Expected %i.",
func, args->count, num)
#define LASSERT_NOT_EMPTY(func, args, index)
LASSERT(args, args->cell[index]->count != 0,
"Function '%s' passed {} for argument %i.", func, index);
#ifdef _WIN32
#include <string.h>
static char buffer[2048];
char *readline(char *prompt) {
fputs(prompt, stdout);
fgets(buffer, 2048, stdin);
char *cpy = malloc(strlen(buffer) + 1);
strcpy(cpy, buffer);
cpy[strlen(cpy) - 1] = ' ';
return cpy;
}
void add_history(char *unused) {}
#else
#ifdef __linux__
#include <readline/readline.h>
#include <readline/history.h>
#endif
#ifdef __MACH__
#include <readline/readline.h>
#endif
#endif
/* Forward Declarations */
struct lval;
struct lenv;
typedef struct lval lval;
typedef struct lenv lenv;
/* Lisp Value Type Enumeration */
enum {
LVAL_NUM,
LVAL_ERR,
LVAL_SYM,
LVAL_FUN,
LVAL_SEXPR,
LVAL_QEXPR
};
typedef lval *(*lbuiltin)(lenv*, lval*);
/* Declare lisp lval Struct */
struct lval {
int type;
/* Basic */
long num;
char *err;
char *sym;
/* Function */
lbuiltin builtin;
lenv *env;
lval *formals;
lval *body;
/* Expression */
int count;
struct lval **cell;
};
/* Construct a pointer to a new Number lval */
lval *lval_num(long x) {
lval *v = malloc(sizeof(lval));
v->type = LVAL_NUM;
v->num = x;
return v;
}
char *ltype_name(int t) {
switch(t) {
case LVAL_FUN: return "Function";
case LVAL_NUM: return "Number";
case LVAL_ERR: return "Error";
case LVAL_SYM: return "Symbol";
case LVAL_SEXPR: return "S-Expression";
case LVAL_QEXPR: return "Q-Expression";
default: return "Unknown";
}
}
/* Construct a pointer to a new Error lval */
lval *lval_err(char *fmt, ...) {
lval *v = malloc(sizeof(lval));
v->type = LVAL_ERR;
/* Create a va list and initialize it */
va_list va;
va_start(va, fmt);
/* Allocate 512 bytes of space */
v->err = malloc(512);
/* printf the error string with a maximum of 511 characters */
vsnprintf(v->err, 511, fmt, va);
/* Reallocate to number of bytes actually used */
v->err = realloc(v->err, strlen(v->err)+1);
/* Cleanup our va list */
va_end(va);
return v;
}
/* Construct a pointer to a new Symbol lval */
lval *lval_sym(char *sym) {
lval *v = malloc(sizeof(lval));
v->type = LVAL_SYM;
v->sym = malloc(strlen(sym) + 1);
strcpy(v->sym, sym);
return v;
}
/* A pointer to a new empty Sexpr lval */
lval *lval_sexpr(void) {
lval *v = malloc(sizeof(lval));
v->type = LVAL_SEXPR;
v->count = 0;
v->cell = NULL;
return v;
}
/* A pointer to a new empty Qexpr lval */
lval *lval_qexpr(void) {
lval *v = malloc(sizeof(lval));
v->type = LVAL_QEXPR;
v->count = 0;
v->cell = NULL;
return v;
}
lval* lval_builtin(lbuiltin func) {
lval *v = malloc(sizeof(lval));
v->type = LVAL_FUN;
v->builtin = func;
return v;
}
struct lenv {
lenv *par;
int count;
char **syms;
lval **vals;
};
lenv *lenv_new(void) {
lenv *e = malloc(sizeof(lenv));
e->par = NULL;
e->count = 0;
e->syms = NULL;
e->vals = NULL;
return e;
}
lval *lval_lambda(lval *formals, lval *body) {
lval *v = malloc(sizeof(lval));
v->type = LVAL_FUN;
/* Set Builtin to Null */
v->builtin = NULL;
/* Build new environment */
v->env = lenv_new();
/* Set Formals and Body */
v->formals = formals;
v->body = body;
return v;
}
void lenv_del(lenv *e);
void lval_del(lval *v) {
switch (v->type) {
/* Do nothing special for number type */
case LVAL_NUM:
break;
/* For Err or Sym free the string data */
case LVAL_ERR:
free(v->err);
break;
case LVAL_SYM:
free(v->sym);
break;
case LVAL_FUN:
if (!v->builtin) {
lenv_del(v->env);
lval_del(v->formals);
lval_del(v->body);
}
break;
/* If Qexpr or Sexpr then delete all elements inside */
case LVAL_QEXPR:
case LVAL_SEXPR:
for (int i = 0; i < v->count; i++) {
lval_del(v->cell[i]);
}
/* Also free the memory allocated to contain the pointers */
free(v->cell);
break;
}
/* Free the memory allocated for the "lval" struct itself */
free(v);
}
void lenv_del(lenv *e) {
for (int i = 0; i < e->count; i++) {
free(e->syms[i]);
lval_del(e->vals[i]);
}
free(e->syms);
free(e->vals);
free(e);
}
lval *lval_copy(lval *v);
lenv *lenv_copy(lenv *e) {
lenv *n = malloc(sizeof(lenv));
n->par = e->par;
n->count = e->count;
n->syms = malloc(sizeof(char*) * n->count);
n->vals = malloc(sizeof(lval*) * n->count);
for (int i = 0; i < e->count; i++) {
n->syms[i] = malloc(strlen(e->syms[i]) + 1);
strcpy(n->syms[i], e->syms[i]);
n->vals[i] = lval_copy(e->vals[i]);
}
return n;
}
lval *lval_copy(lval *v) {
lval *x = malloc(sizeof(lval));
x->type = v->type;
switch (v->type) {
/* Copy Functions and Numbers Directly */
case LVAL_FUN:
if (v->builtin) {
x->builtin = v->builtin;
} else {
x->builtin = NULL;
x->env = lenv_copy(v->env);
x->formals = lval_copy(v->formals);
x->body = lval_copy(v->body);
}
break;
case LVAL_NUM: x->num = v->num; break;
/* Copy Strings using malloc and strcpy */
case LVAL_ERR:
x->err = malloc(strlen(v->err) + 1);
strcpy(x->err, v->err);
break;
case LVAL_SYM:
x->sym = malloc(strlen(v->sym) + 1);
strcpy(x->sym, v->sym);
break;
/* Copy Lists by copying each sub-expression */
case LVAL_SEXPR:
case LVAL_QEXPR:
x->count = v->count;
x->cell = malloc(sizeof(lval*) * x->count);
for (int i = 0; i < x->count; i++) {
x->cell[i] = lval_copy(v->cell[i]);
}
break;
}
return x;
}
lval *lenv_get(lenv *e, lval *k) {
/* Iterate over all items in environment */
for (int i = 0; i < e->count; i++) {
/* Check if the stored string matches the symbol string */
/* If it does, return a copy of the value */
if (strcmp(e->syms[i], k->sym) == 0) {
return lval_copy(e->vals[i]);
}
}
/* If no symbol check in parent otherwise error */
if (e->par) {
return lenv_get(e->par, k);
} else {
return lval_err("Unbound Symbol '%s'", k->sym);
}
}
void lenv_put(lenv *e, lval *k, lval *v) {
/* Iterate over all items in environment */
/* This is to see if variable already exists */
for (int i = 0; i < e->count; i++) {
/* If variable is found delete item at that position */
/* And replace with variable supplied by user */
if (strcmp(e->syms[i], k->sym) == 0) {
lval_del(e->vals[i]);
e->vals[i] = lval_copy(v);
return;
}
}
/* If no existing entry found allocate space for new entry */
e->count++;
e->vals = realloc(e->vals, sizeof(lval*) * e->count);
e->syms = realloc(e->syms, sizeof(char*) * e->count);
/* Copy contents of lval and symbol string into new location */
e->vals[e->count-1] = lval_copy(v);
e->syms[e->count-1] = malloc(strlen(k->sym)+1);
strcpy(e->syms[e->count-1], k->sym);
}
void lenv_def(lenv *e, lval *k, lval *v) {
/* Iterate till e has no parent */
while (e->par) {
e = e->par;
}
/* Put value in e */
lenv_put(e, k, v);
}
lval *lval_add(lval *v, lval *x) {
v->count++;
v->cell = realloc(v->cell, sizeof(lval*) * v->count);
v->cell[v->count-1] = x;
return v;
}
lval *lval_read_num(mpc_ast_t *t) {
errno = 0;
long x = strtol(t->contents, NULL, 10);
return errno != ERANGE
? lval_num(x)
: lval_err("invalid number");
}
lval *lval_read(mpc_ast_t *t) {
/* If Symbol or Number return conversion to that type */
if (strstr(t->tag, "number")) {
return lval_read_num(t);
}
if (strstr(t->tag, "symbol")) {
return lval_sym(t->contents);
}
/* If root (>) or sexpr then create empty list */
lval *x = NULL;
if (strcmp(t->tag, ">") == 0) {
x = lval_sexpr();
}
if (strstr(t->tag, "sexpr")) {
x = lval_sexpr();
}
if (strstr(t->tag, "qexpr")) {
x = lval_qexpr();
}
/* Fill this list with any valid expression contained within */
for (int i = 0; i < t->children_num; i++) {
if (strcmp(t->children[i]->contents, "(") == 0) { continue; }
if (strcmp(t->children[i]->contents, ")") == 0) { continue; }
if (strcmp(t->children[i]->contents, "}") == 0) { continue; }
if (strcmp(t->children[i]->contents, "{") == 0) { continue; }
if (strcmp(t->children[i]->tag, "regex") == 0) { continue; }
x = lval_add(x, lval_read(t->children[i]));
}
return x;
}
void lval_print(lval *v);
void lval_expr_print(lval *v, char open, char close) {
putchar(open);
for (int i = 0; i < v->count; i++) {
/* Print Value contained within */
lval_print(v->cell[i]);
/* Don't print trailing space if last element */
if (i != (v->count-1)) {
putchar(' ');
}
}
putchar(close);
}
/* Print an "lval*" */
void lval_print(lval *v) {
switch (v->type) {
case LVAL_NUM: printf("%li", v->num); break;
case LVAL_ERR: printf("Error: %s", v->err); break;
case LVAL_SYM: printf("%s", v->sym); break;
case LVAL_SEXPR: lval_expr_print(v, '(', ')'); break;
case LVAL_QEXPR: lval_expr_print(v, '{', '}'); break;
case LVAL_FUN:
if (v->builtin) {
printf("<builtin>");
} else {
printf("(\ "); lval_print(v->formals);
putchar(' ');
lval_print(v->body);
putchar(')');
}
break;
}
}
/* Print an "lval" followed by a newline */
void lval_println(lval *v) {
lval_print(v);
putchar('
');
}
lval *lval_pop(lval *v, int i) {
/* Find the item at "i" */
lval *x = v->cell[i];
/* Shift memory after the item at "i" over the top */
memmove(&v->cell[i], &v->cell[i+1],
sizeof(lval*) * (v->count-i-1));
/* Decrease the count of items in the list */
v->count--;
/* Reallocate the memory used */
v->cell = realloc(v->cell, sizeof(lval*) * v->count);
return x;
}
lval *lval_take(lval *v, int i) {
lval *x = lval_pop(v, i);
lval_del(v);
return x;
}
lval *builtin_eval(lenv* e, lval *a);
lval *builtin_list(lenv *e, lval *a);
lval *lval_call(lenv *e, lval *f, lval *a) {
/* If Builtin then simply apply that */
if (f->builtin) {
return f->builtin(e, a);
}
/* Record Argument Counts */
int given = a->count;
int total = f->formals->count;
/* While arguments still remain to be processed */
while (a->count) {
/* If we've ran out of formal arguments to bind */
if (f->formals->count == 0) {
lval_del(a);
return lval_err("Function passed too many arguments. "
"Got %i, Expected %i.", given, total);
}
/* Pop the first symbol from the formals */
lval *sym = lval_pop(f->formals, 0);
/* Special Case to deal with '&' */
if (strcmp(sym->sym, "&") == 0) {
/* Ensure '&' is followed by another symbol */
if (f->formals->count != 1) {
lval_del(a);
return lval_err("Function format invalid. "
"Symbol '&' not followed by single symbol.");
}
/* Next formal should be bound to remaining arguments */
lval *nsym = lval_pop(f->formals, 0);
lenv_put(f->env, nsym, builtin_list(e, a));
lval_del(sym); lval_del(nsym);
break;
}
/* Pop the next argument from the list */
lval* val = lval_pop(a, 0);
/* Bind a copy into the function's environment */
lenv_put(f->env, sym, val);
/* Delete symbol and value */
lval_del(sym); lval_del(val);
}
/* Argument list is now bound so can be cleaned up */
lval_del(a);
/* If '&' remains in formal list bind to empty list */
if (f->formals->count > 0 && strcmp(f->formals->cell[0]->sym, "&") == 0) {
/* Check to ensure that & is not passed invalidly. */
if (f->formals->count != 2) {
return lval_err("Function format invalid. "
"Symbol '&' not followed by single symbol.");
}
/* Pop and delete '&' symbol */
lval_del(lval_pop(f->formals, 0));
/* Pop next symbol and create empty list */
lval* sym = lval_pop(f->formals, 0);
lval* val = lval_qexpr();
/* Bind to environment and delete */
lenv_put(f->env, sym, val);
lval_del(sym); lval_del(val);
}
/* If all formals have been bound evaluate */
if (f->formals->count == 0) {
/* Set environment parent to evaluation environment */
f->env->par = e;
/* Evaluate and return */
return builtin_eval(f->env, lval_add(lval_sexpr(),
lval_copy(f->body)));
} else {
/* Otherwise return partially evaluated function */
return lval_copy(f);
}
}
lval *lval_eval(lenv *e, lval *v);
lval *builtin(lval* a, char* func);
lval *lval_eval_sexpr(lenv *e, lval *v) {
/* Evaluate Children */
for (int i = 0; i < v->count; i++) {
v->cell[i] = lval_eval(e, v->cell[i]);
}
/* Error Checking */
for (int i = 0; i < v->count; i++) {
if (v->cell[i]->type == LVAL_ERR) {
return lval_take(v, i);
}
}
/* Empty Expression */
if (v->count == 0) { return v; }
/* Single Expression */
if (v->count == 1) { return lval_take(v, 0); }
/* Ensure first element is a function after evaluation */
lval *f = lval_pop(v, 0);
if (f->type != LVAL_FUN) {
lval *err = lval_err("S-Expression starts with incorrect type. "
"Got %s, Expected %s.",
ltype_name(f->type), ltype_name(LVAL_FUN));
lval_del(f);
lval_del(v);
return err;
}
lval *result = lval_call(e, f, v);
lval_del(f);
return result;
}
lval *lval_eval(lenv *e, lval *v) {
if (v->type == LVAL_SYM) {
lval *x = lenv_get(e, v);
lval_del(v);
return x;
}
/* Evaluate Sexpressions */
if (v->type == LVAL_SEXPR) {
return lval_eval_sexpr(e, v);
}
/* All other lval types remain the same */
return v;
}
lval *builtin_op(lenv* e, lval *a, char *op) {
/* Ensure all arguments are numbers */
for (int i = 0; i < a->count; i++) {
LASSERT_TYPE(op, a, i, LVAL_NUM);
}
/* Pop the first element */
lval *x = lval_pop(a, 0);
/* If no arguments and sub then perform unary negation */
if ((strcmp(op, "-") == 0) && a->count == 0) {
x->num = -x->num;
}
/* While there are still elements remaining */
while (a->count > 0) {
/* Pop the next element */
lval *y = lval_pop(a, 0);
if (strcmp(op, "+") == 0) { x->num += y->num; }
if (strcmp(op, "-") == 0) { x->num -= y->num; }
if (strcmp(op, "*") == 0) { x->num *= y->num; }
if (strcmp(op, "/") == 0) {
if (y->num == 0) {
lval_del(x);
lval_del(y);
x = lval_err("Division By Zero!");
break;
}
x->num /= y->num;
}
lval_del(y);
}
lval_del(a);
return x;
}
lval *builtin_head(lenv* e, lval *a) {
LASSERT_NUM("head", a, 1);
LASSERT_TYPE("head", a, 0, LVAL_QEXPR);
LASSERT_NOT_EMPTY("head", a, 0);
/* Otherwise take first argument */
lval *v = lval_take(a, 0);
/* Delete all elements that are not head and return */
while (v->count > 1) {
lval_del(lval_pop(v, 1));
}
return v;
}
lval *builtin_tail(lenv *e, lval *a) {
LASSERT_NUM("tail", a, 1);
LASSERT_TYPE("tail", a, 0, LVAL_QEXPR);
LASSERT_NOT_EMPTY("tail", a, 0);
/* Take first argument */
lval *v = lval_take(a, 0);
/* Delete first element and return */
lval_del(lval_pop(v, 0));
return v;
}
lval *builtin_list(lenv *e, lval *a) {
a->type = LVAL_QEXPR;
return a;
}
lval *builtin_eval(lenv* e, lval *a) {
LASSERT_NUM("eval", a, 1);
LASSERT_TYPE("eval", a, 0, LVAL_QEXPR);
lval *x = lval_take(a, 0);
x->type = LVAL_SEXPR;
return lval_eval(e, x);
}
lval *lval_join(lval *x, lval *y) {
/* For each cell in 'y' add it to 'x' */
while (y->count) {
x = lval_add(x, lval_pop(y, 0));
}
/* Delete the empty 'y' and return 'x' */
lval_del(y);
return x;
}
lval *builtin_join(lenv *e, lval *a) {
for (int i = 0; i < a->count; i++) {
LASSERT_TYPE("join", a, i, LVAL_QEXPR);
}
lval *x = lval_pop(a, 0);
while (a->count) {
x = lval_join(x, lval_pop(a, 0));
}
lval_del(a);
return x;
}
lval *builtin_add(lenv *e, lval *a) {
return builtin_op(e, a, "+");
}
lval *builtin_sub(lenv *e, lval *a) {
return builtin_op(e, a, "-");
}
lval *builtin_mul(lenv *e, lval *a) {
return builtin_op(e, a, "*");
}
lval *builtin_div(lenv *e, lval *a) {
return builtin_op(e, a, "/");
}
void lenv_add_builtin(lenv *e, char *name, lbuiltin func) {
lval *k = lval_sym(name);
lval* v = lval_builtin(func);
lenv_put(e, k, v);
lval_del(k); lval_del(v);
}
lval *builtin_var(lenv *e, lval *a, char *func) {
LASSERT_TYPE(func, a, 0, LVAL_QEXPR);
lval* syms = a->cell[0];
for (int i = 0; i < syms->count; i++) {
LASSERT(a, (syms->cell[i]->type == LVAL_SYM),
"Function '%s' cannot define non-symbol. "
"Got %s, Expected %s.", func,
ltype_name(syms->cell[i]->type),
ltype_name(LVAL_SYM));
}
LASSERT(a, (syms->count == a->count-1),
"Function '%s' passed too many arguments for symbols. "
"Got %i, Expected %i.", func, syms->count, a->count-1);
for (int i = 0; i < syms->count; i++) {
/* If 'def' define in globally. If 'put' define in locally */
if (strcmp(func, "def") == 0) {
lenv_def(e, syms->cell[i], a->cell[i+1]);
}
if (strcmp(func, "=") == 0) {
lenv_put(e, syms->cell[i], a->cell[i+1]);
}
}
lval_del(a);
return lval_sexpr();
}
lval *builtin_def(lenv *e, lval *a) {
return builtin_var(e, a, "def");
}
lval *builtin_put(lenv *e, lval *a) {
return builtin_var(e, a, "=");
}
lval *builtin_lambda(lenv *e, lval *a) {
/* Check Two arguments, each of which are Q-Expressions */
LASSERT_NUM("\", a, 2);
LASSERT_TYPE("\", a, 0, LVAL_QEXPR);
LASSERT_TYPE("\", a, 1, LVAL_QEXPR);
/* Check first Q-Expression contains only Symbols */
for (int i = 0; i < a->cell[0]->count; i++) {
LASSERT(a, (a->cell[0]->cell[i]->type == LVAL_SYM),
"Cannot define non-symbol. Got %s, Expected %s.",
ltype_name(a->cell[0]->cell[i]->type),ltype_name(LVAL_SYM));
}
/* Pop first two arguments and pass them to lval_lambda */
lval *formals = lval_pop(a, 0);
lval *body = lval_pop(a, 0);
lval_del(a);
return lval_lambda(formals, body);
}
lval *builtin_ord(lenv *e, lval *a, char *op);
lval *builtin_gt(lenv *e, lval *a) {
return builtin_ord(e, a, ">");
}
lval *builtin_lt(lenv *e, lval *a) {
return builtin_ord(e, a, "<");
}
lval *builtin_ge(lenv *e, lval *a) {
return builtin_ord(e, a, ">=");
}
lval *builtin_le(lenv *e, lval *a) {
return builtin_ord(e, a, "<=");
}
lval *builtin_ord(lenv *e, lval *a, char *op) {
LASSERT_NUM(op, a, 2);
LASSERT_TYPE(op, a, 0, LVAL_NUM);
LASSERT_TYPE(op, a, 1, LVAL_NUM);
int r;
if (strcmp(op, ">") == 0) {
r = (a->cell[0]->num > a->cell[1]->num);
}
if (strcmp(op, "<") == 0) {
r = (a->cell[0]->num < a->cell[1]->num);
}
if (strcmp(op, ">=") == 0) {
r = (a->cell[0]->num >= a->cell[1]->num);
}
if (strcmp(op, "<=") == 0) {
r = (a->cell[0]->num <= a->cell[1]->num);
}
lval_del(a);
return lval_num(r);
}
int lval_eq(lval *x, lval *y) {
/* Different Types are always unequal */
if (x->type != y->type) { return 0; }
/* Compare Based upon type */
switch (x->type) {
/* Compare Number Value */
case LVAL_NUM: return (x->num == y->num);
/* Compare String Values */
case LVAL_ERR: return (strcmp(x->err, y->err) == 0);
case LVAL_SYM: return (strcmp(x->sym, y->sym) == 0);
/* If builtin compare, otherwise compare formals and body */
case LVAL_FUN:
if (x->builtin || y->builtin) {
return x->builtin == y->builtin;
} else {
return lval_eq(x->formals, y->formals) && lval_eq(x->body, y->body);
}
/* If list compare every individual element */
case LVAL_QEXPR:
case LVAL_SEXPR:
if (x->count != y->count) { return 0; }
for (int i = 0; i < x->count; i++) {
/* If any element not equal then whole list not equal */
if (!lval_eq(x->cell[i], y->cell[i])) { return 0; }
}
/* Otherwise lists must be equal */
return 1;
break;
}
return 0;
}
lval *builtin_cmp(lenv *e, lval *a, char *op) {
LASSERT_NUM(op, a, 2);
int r;
if (strcmp(op, "==") == 0) {
r = lval_eq(a->cell[0], a->cell[1]);
}
if (strcmp(op, "!=") == 0) {
r = !lval_eq(a->cell[0], a->cell[1]);
}
lval_del(a);
return lval_num(r);
}
lval *builtin_eq(lenv *e, lval *a) {
return builtin_cmp(e, a, "==");
}
lval *builtin_ne(lenv *e, lval *a) {
return builtin_cmp(e, a, "!=");
}
lval *builtin_if(lenv *e, lval *a) {
LASSERT_NUM("if", a, 3);
LASSERT_TYPE("if", a, 0, LVAL_NUM);
LASSERT_TYPE("if", a, 1, LVAL_QEXPR);
LASSERT_TYPE("if", a, 2, LVAL_QEXPR);
/* Mark Both Expressions as evaluable */
lval *x;
a->cell[1]->type = LVAL_SEXPR;
a->cell[2]->type = LVAL_SEXPR;
if (a->cell[0]->num) {
/* If condition is true evaluate first expression */
x = lval_eval(e, lval_pop(a, 1));
} else {
/* Otherwise evaluate second expression */
x = lval_eval(e, lval_pop(a, 2));
}
/* Delete argument list and return */
lval_del(a);
return x;
}
void lenv_add_builtins(lenv *e) {
/* Variable Functions */
lenv_add_builtin(e, "def", builtin_def);
lenv_add_builtin(e, "\", builtin_lambda);
lenv_add_builtin(e, "=", builtin_put);
/* List Functions */
lenv_add_builtin(e, "list", builtin_list);
lenv_add_builtin(e, "head", builtin_head);
lenv_add_builtin(e, "tail", builtin_tail);
lenv_add_builtin(e, "eval", builtin_eval);
lenv_add_builtin(e, "join", builtin_join);
/* Mathematical Functions */
lenv_add_builtin(e, "+", builtin_add);
lenv_add_builtin(e, "-", builtin_sub);
lenv_add_builtin(e, "*", builtin_mul);
lenv_add_builtin(e, "/", builtin_div);
/* Comparison Functions */
lenv_add_builtin(e, "if", builtin_if);
lenv_add_builtin(e, "==", builtin_eq);
lenv_add_builtin(e, "!=", builtin_ne);
lenv_add_builtin(e, ">", builtin_gt);
lenv_add_builtin(e, "<", builtin_lt);
lenv_add_builtin(e, ">=", builtin_ge);
lenv_add_builtin(e, "<=", builtin_le);
}
int main(int argc, char *argv[]) {
/* Create Some Parsers */
mpc_parser_t *Number = mpc_new("number");
mpc_parser_t* Symbol = mpc_new("symbol");
mpc_parser_t* Sexpr = mpc_new("sexpr");
mpc_parser_t *Qexpr = mpc_new("qexpr");
mpc_parser_t *Expr = mpc_new("expr");
mpc_parser_t *Lispy = mpc_new("lispy");
/* Define them with the following Language */
mpca_lang(MPCA_LANG_DEFAULT,
"
number : /-?[0-9]+/ ;
symbol : /[a-zA-Z0-9_+\-*\/\\=<>!&]+/ ;
sexpr : '(' <expr>* ')' ;
qexpr : '{' <expr>* '}' ;
expr : <number> | <symbol> | <sexpr> | <qexpr> ;
lispy : /^/ <expr>* /$/ ;
",
Number, Symbol, Sexpr, Qexpr, Expr, Lispy);
puts("Lispy Version 0.1");
puts("Press Ctrl+c to Exit
");
lenv *e = lenv_new();
lenv_add_builtins(e);
while(1) {
char *input = readline("lispy> ");
add_history(input);
/* Attempt to parse the user input */
mpc_result_t r;
if (mpc_parse("<stdin>", input, Lispy, &r)) {
/* On success print and delete the AST */
lval *x = lval_eval(e, lval_read(r.output));
lval_println(x);
lval_del(x);
mpc_ast_delete(r.output);
} else {
/* Otherwise print and delete the Error */
mpc_err_print(r.error);
mpc_err_delete(r.error);
}
free(input);
}
lenv_del(e);
/* Undefine and delete our parsers */
mpc_cleanup(6, Number, Symbol, Sexpr, Qexpr, Expr, Lispy);
return 0;
}
编译:
gcc -g -std=c99 -Wall parsing.c mpc.c -lreadline -lm -o parsing
运行:
$ ./parsing
Lispy Version 0.1
Press Ctrl+c to Exit
lispy> > 10 5
1
lispy> <= 88 5
0
lispy> == 5 6
0
lispy> == 5 {}
0
lispy> == 1 1
1
lispy> != {} 56
1
lispy> == {1 2 3 {5 6}} {1 2 3 {5 6}}
1
lispy> def {x y} 100 200
()
lispy> if (== x y) {+ x y} {- x y}
-100