• 贝叶斯-实现新闻数据分类


    用贝叶斯实现新闻分类

    • 重点,停用词的去除,词向量的构建, TF-IDF原理
    • 停用词可以通过停用词表进行去除
    • 词向量构建,本文是通过简单的词频模型,来构建词向量
    • IF-IDF 通过词频和关键词提取,来判断一个单词出现的重要性
    import pandas as pd
    import jieba
    
    
    pd.set_option('display.max_columns', None)   #显示完整的列
    df_news = pd.read_table('./data/val.txt', names=['category', 'theme', 'URL','content'], encoding='utf-8')
    df_news = df_news.dropna()
    # print(df_news.head())
    
    
    print(df_news.shape)
    
    # 分词,使用结巴分词
    content = df_news.content.values.tolist()
    # print(content[1000])
    
    content_S = []
    for line in content:
        current_segment = jieba.lcut(line)
        if len(current_segment) > 1 and current_segment != '
    ':
            content_S.append(current_segment)
    
    
    # print(content_S[1000])
    
    df_content = pd.DataFrame({'content_S': content_S})
    # print(df_content.head())
    
    stopwords = pd.read_csv('stopwords.txt', index_col=False, sep='	', quoting=3, names=['stopwords'], encoding='utf-8')
    # print(stopwords.head())
    
    def drop_stopwords(contents, stopwords):
        contents_clean = []
        all_words = []
        for line in contents:
            line_clean = []
            for word in line:
                if word in stopwords:
                    continue
                line_clean.append(word)
                all_words.append(str(word))
            contents_clean.append(line_clean)
        return contents_clean, all_words
    
    contents = df_content.content_S.values.tolist()
    stopwords = stopwords.stopwords.values.tolist()
    contents_clean, all_wrods  = drop_stopwords(contents, stopwords)
    
    df_content = pd.DataFrame({'contents_clean': contents_clean})
    # print(df_content.head())
    
    df_all_words = pd.DataFrame({'all_words': all_wrods})
    # print(df_all_words.head())
    import numpy
    words_count = df_all_words.groupby(by=['all_words'])['all_words'].agg({'count': numpy.size})
    words_count = words_count.reset_index().sort_values(by=['count'], ascending=False)
    # print(words_count.head())
    
    
    # from wordcloud import WordCloud
    # import matplotlib.pyplot as plt
    # import matplotlib
    # matplotlib.rcParams['figure.figsize'] = (10.0, 5.0)
    #
    # wordcloud = WordCloud(font_path='./simhei.ttf', background_color='white', max_font_size=80)
    # word_frequence = {x[0]: x[1] for x in words_count.head(100).values}
    # wordcloud = wordcloud.fit_words(word_frequence)
    # plt.imshow(wordcloud)
    # plt.show()
    
    
    # TF-IDF 提取关键词
    # import jieba.analyse
    # index = 2000
    # print(df_news['content'][index])
    # content_S_str = "".join(content_S[index])
    # print(content_S_str)
    # print(" ".join(jieba.analyse.extract_tags(content_S_str, topK=5, withWeight=False)))
    
    # LDA:主题模型
    # 格式要求:list of list 形式,分词好的整个语料
    from gensim import corpora, models, similarities
    import gensim
    
    # 做映射,相当于词袋
    dictionary = corpora.Dictionary(contents_clean)
    corpus = [dictionary.doc2bow(sentence) for sentence in contents_clean]
    
    lda = gensim.models.ldamodel.LdaModel(corpus=corpus, id2word=dictionary, num_topics=20) # 类始于K-means 自己指定K值
    
    # 一号分类结果
    print(lda.print_topic(1, topn=5))
    
    # for topic in lda.print_topics(num_topics=20, num_words=5):
    #     print(topic[1])
    
    
    df_train = pd.DataFrame({"contents_clean": contents_clean, 'label': df_news['category']})
    print(df_train.tail())
    
    print(df_train.label.unique())
    
    
    label_mapping = {'汽车':1, '财经':2, '科技':3, '健康':4, '体育':5, '教育':6, '文化':7, '军事':8, '娱乐':9, '时尚':10}
    df_train['label'] = df_train['label'].map(label_mapping)
    
    print(df_train.head())
    
    from sklearn.model_selection import train_test_split
    
    x_train, x_test, y_train, y_test = train_test_split(df_train['contents_clean'].values, df_train['label'].values, random_state=0)
    
    print(x_test[0][1])
    
    # 统计
    words = []
    
    for line_index in range(len(x_train)):
        try:
            words.append(' '.join(x_train[line_index]))
        except:
            print(line_index)
    print(words[0])
    print(len(words))
    
    from sklearn.feature_extraction.text import CountVectorizer
    
    vec = CountVectorizer(analyzer='word', max_features=4000, lowercase=False)
    vec.fit(words)
    
    from sklearn.naive_bayes import MultinomialNB
    classifier = MultinomialNB()
    classifier.fit(vec.transform(words), y_train)
    
    test_words = []
    
    for line_index in range(len(x_test)):
        try:
           test_words.append(' '.join(x_test[line_index]))
        except:
            print(line_index)
    
    print(type(test_words[0]))
    
    print('---------------------')
    
    print(classifier.score(vec.transform(test_words), y_test))
    

    文本向量的测试

    from sklearn.feature_extraction.text import CountVectorizer
    
    texts = ['dog cat fish', 'dog cat cat', 'fish bird', 'bird']
    cv = CountVectorizer()
    cv_fit = cv.fit_transform(texts)
    print(cv.get_feature_names())
    print(cv_fit.toarray())
    
    print(cv_fit.toarray().sum(axis=0))
    
  • 相关阅读:
    C语言基础知识-程序流程结构
    C语言基础知识-运算符与表达式
    Cloudera Certified Associate Administrator案例之Configure篇
    Python入门篇-文件操作
    gif软件(ShareX)
    BareTail(日志查看工具)
    [UGUI]游戏中的Tips贴图标边缘显示(贴边)
    Lua中的#
    ugui SetParent在安卓上一个诡异bug
    .svn文件夹特别大
  • 原文地址:https://www.cnblogs.com/jly1/p/13083669.html
Copyright © 2020-2023  润新知