• 可视化-Matplotlib的常见用法


    Matplotlib常见的用法

    import pandas as pd
    import numpy as np
    unrate = pd.read_csv('UNRATE.csv')
    unrate['DATE'] = pd.to_datetime(unrate['DATE'])
    print(unrate.head(12))
    
    import matplotlib.pyplot as plt
    # plt.plot()
    
    # 前12个样本
    # first_twelve = unrate[0:12]
    # plt.plot(first_twelve['DATE'], first_twelve['VALUE'])
    #
    # # 横坐标旋转45度
    # plt.xticks(rotation=45)
    
    # 添加 坐标轴名称
    plt.xlabel('Month')
    plt.ylabel('Unemployment Rate')
    plt.title('Monthly Unemployment Trends 1948')
    
    # 子图 Data visualization
    
    # fig = plt.figure()
    # # ax1 = fig.add_subplot(4, 3, 1)
    # # ax2 = fig.add_subplot(4, 3, 2)
    # # ax3 = fig.add_subplot(4, 3, 3)
    # ax4 = fig.add_subplot(4, 3, 6)
    
    # 子图的大小
    # fig = plt.figure(figsize=(5, 5))
    #
    # ax1 = fig.add_subplot(2, 1, 1)
    # ax2 = fig.add_subplot(2, 1, 2)
    #
    # ax1.plot(np.arange(5), np.random.randint(1, 5, 5))
    # ax2.plot(np.arange(5), np.arange(5) * 3)
    #
    
    # 添加颜色
    # unrate['Month'] = unrate['DATE'].dt.month
    # fig = plt.figure(figsize=(6, 3))
    #
    # plt.plot(unrate[0:12]['Month'], unrate[0:12]['VALUE'], c= 'red')
    # plt.plot(unrate[12:24]['Month'], unrate[12:24]['VALUE'], c= 'blue')
    # # 添加图例
    # fig = plt.figure(figsize=(10, 6))
    # colors = ['red', 'blue', 'green', 'orange', 'black']
    # for i in range(5):
    #     start_index = i * 12
    #     end_index = (i+1) * 12
    #     subset = unrate[start_index: end_index]
    #     label = str(1948 + i)
    #     plt.plot(subset['Month'], subset['VALUE'], c=colors[i], label=label)
    #
    # plt.legend(loc='best')
    
    # 柱形图
    reviews = pd.read_csv('fandango_scores.csv')
    print(reviews.columns)
    cols = ['FILM', 'RT_user_norm', 'Metacritic_user_nom', 'IMDB_norm', 'Fandango_Ratingvalue']
    norm_reviews = reviews[cols]
    print(norm_reviews[:5])
    
    fandango_distribution = norm_reviews['Fandango_Ratingvalue'].value_counts()
    fandango_distribution = fandango_distribution.sort_index()
    
    imdb_distribution = norm_reviews['IMDB_norm'].value_counts()
    imdb_distribution = imdb_distribution.sort_index()
    
    print(fandango_distribution)
    print(imdb_distribution)
    
    fig, ax = plt.subplots()
    #ax.hist(norm_reviews['Fandango_Ratingvalue'])
    # ax.hist(norm_reviews['Fandango_Ratingvalue'], bins=20)
    # ax.hist(norm_reviews['Fandango_Ratingvalue'], range=(4, 5), bins=20)
    
    # fig = plt.figure(figsize=(5, 20))
    # ax1 = fig.add_subplot(4, 1, 1)
    # ax2 = fig.add_subplot(4, 1, 2)
    # ax3 = fig.add_subplot(4, 1, 3)
    # ax4 = fig.add_subplot(4, 1, 4)
    #
    # ax1.hist(norm_reviews['Fandango_Ratingvalue'], bins=20, range=(0, 5))
    # ax1.set_title('Distribution of Fandango Rratings')
    # ax1.set_ylim(0, 50)
    #
    # ax2.hist(norm_reviews['RT_user_norm'], bins=20, range=(0, 5))
    # ax2.set_title('Distribution of RT_user_norm')
    # ax2.set_ylim(0, 50)
    #
    # ax3.hist(norm_reviews['Metacritic_user_nom'], bins=20, range=(0, 5))
    # ax3.set_title('Distribution of Metacritic_user_nom')
    # ax3.set_ylim(0, 50)
    #
    # ax4.hist(norm_reviews['IMDB_norm'], bins=20, range=(0, 5))
    # ax4.set_title('Distribution of IMDB_norm')
    # ax4.set_ylim(0, 50)
    
    # 箱形图
    # fig, ax = plt.subplots()
    # ax.boxplot(norm_reviews['RT_user_norm'])
    # ax.set_xticklabels(['Rotten Tomatoes'])
    # ax.set_ylim(0, 5)
    
    num_cols = ['RT_user_norm', 'Metacritic_user_nom', 'IMDB_norm', 'Fandango_Ratingvalue']
    fig, ax = plt.subplots()
    ax.boxplot(norm_reviews[num_cols].values)
    ax.set_xticklabels(num_cols, rotation=90)
    ax.set_ylim(0, 5)
    plt.show()
    
  • 相关阅读:
    echo -e的用法
    nc ip 22
    /pentest/backdoors/3proxy
    /usr/local/sbin/arpspoof
    tcpick
    nginx服务报403错误的解决方法
    linux上部署thinkphp5提示500
    修改文件夹的所有者为www
    Host xxx is not allowed to connect to this MariaDb server
    解决Linux 下 root用户删除文件提示:Operation not permitted
  • 原文地址:https://www.cnblogs.com/jly1/p/13047736.html
Copyright © 2020-2023  润新知