• Numpy常见的语法


    Numpy 学习的一些常见语法,然后进行不断的扩充

    • 学习环境是Pycharm, 所需要的资料可以私信我
    world_alcohol = np.genfromtxt('world_alcohol.txt', delimiter=',', dtype=str)
    print(type(world_alcohol))
    print(world_alcohol)
    # print(help(np.genfromtxt))
    # 可以直接打印文档
    # The numpy.array()
    vector = np.array([5, 10, 15, 20])
    # when we input a list of lists
    matrix = np.array([[5, 10, 15], [20, 25, 30], [35, 40, 45]])
    print(vector)
    print(matrix)
    
    print(vector.shape)
    print(matrix.shape)
    # array 里面必须是相同的东西
    numbers = np.array([1, 2, 3, 4.0])
    print(numbers)
    print(numbers.dtype)
    
    # 下面是numpy实战
    # 取某一个特殊的值
    uruguay_other_1986 = world_alcohol[2,4]
    third_country = world_alcohol[3, 2]
    print(uruguay_other_1986)
    print(third_country)
    
    # 切片
    vector = np.array([5, 10, 15, 20])
    print(vector[0:3])
    matrix = np.array([[5, 10, 15],
                       [20, 25, 30],
                       [35, 40, 45]])
    print(matrix[:, 1])
    print(matrix[:, 0:2])
    
    #进行计算- 对里面的每一个元素进行操作
    vector = np.array([5, 10, 15, 20])
    print(vector == 10)
    
    matrix = np.array([[5, 10, 15],
                       [20, 25, 30],
                       [35, 40, 45]])
    print(matrix == 25)
    
    # 得到结果有什么用?
    # 把正确的结果的数字会返回出来
    vector = np.array([5, 10, 15, 20])
    equal_to_ten = (vector == 10)
    print(equal_to_ten)
    print(vector[equal_to_ten])
    
    matrix = np.array([[5, 10, 15],
                       [20, 25, 30],
                       [35, 40, 45]])
    second_column_25 = (matrix[:, 1] == 25)
    print(second_column_25)
    print(matrix[second_column_25, :])
    
    # 取判断的操作
    vector = np.array([5, 10, 15, 20])
    equal_to_ten_and_five = (vector == 10) & (vector == 5)
    print(equal_to_ten_and_five)
    
    equal_to_ten_or_five = (vector == 10) | (vector == 5)
    print(equal_to_ten_or_five)
    # 可以修改赋值
    vector[equal_to_ten_or_five] = 50
    print(vector)
    
    matrix = np.array([[5, 10, 15],
                       [20, 25, 30],
                       [35, 40, 45]])
    second_column_25 = (matrix[:, 1] == 25)
    matrix[second_column_25, 1] = 10
    print(matrix)
    
    # 对整体的Numpy.array 进行修改类型
    vector = np.array(['1', '2', '3'])
    print(vector.dtype)
    print(vector)
    
    vector = vector.astype(float)
    print(vector.dtype)
    print(vector)
    
    # 常见的函数
    vector = np.array([5, 10, 15, 20])
    print(vector.min())
    print(vector.max())
    
    # 求和, 按列和行进行求和
    matrix = np.array([[5, 10, 15],
                       [20, 25, 30],
                       [35, 40, 45]])
    # axis = 1 是按行进行求和
    print(matrix.sum(axis=1))
    # axis = 0 按列进行求和
    print(matrix.sum(axis=0))
    
    # 对矩阵进行变换
    print(np.arange(15))
    a = np.arange(15).reshape(3, 5)
    print(a)
    print(a.shape)
    # 得到维度
    print(a.ndim)
    print(a.dtype.name)
    # 得到元素个数
    print(a.size)
    # 初始化矩阵全为0
    print(np.zeros((3, 4)))
    print(np.ones((2, 3, 4), dtype=np.int32))
    
    # 初始化序列
    print(np.arange(10, 30, 5))
    
    # 随机初始化序列
    print(np.random.random((2, 3)))
    
    # 在XX之间指定固定的数
    from numpy import pi
    print(np.linspace(0, 2*pi, 100))
    
    # 对两个array 进行计算
    a = np.array([20, 30, 40, 50])
    b = np.arange(4)
    print(a)
    print(b)
    # -
    c = a - b
    print(c)
    c = c - 1
    print(c)
    print(b ** 2)
    print(a < 35)
    
    # 内积
    A = np.array([[1, 1],
                  [0, 1]])
    B = np.array([[2, 0],
                  [3, 4]])
    print(A)
    print('---------')
    print(B)
    print('---------')
    print(A*B)
    print('---------')
    print(A.dot(B))
    print('---------')
    print(np.dot(A, B))
    
    # 常见的性质
    B = np.arange(3)
    print(B)
    print(np.exp(B))
    print(np.sqrt(B))
    
    # 返回整形 floor, 向下取整
    a = np.floor(10 * np.random.random((3, 4)))
    print(a)
    print('---------')
    
    # flatten the array, 拉平一个矩阵
    print(a.ravel())
    a.shape = (6, 2)
    print(a)
    print(a.T)
    
    # 如果一个维度确定, 另外一个维度可以写成-1, 自动计算
    print(a.reshape(3, -1))
    
    # 按行拼接hstack, 按列拼接 vstack
    a = np.floor(10 * np.random.random((2, 2)))
    b = np.floor(10 * np.random.random((2, 2)))
    print(a)
    print('------')
    print(b)
    print('------')
    print(np.hstack((a, b)))
    print('------')
    print(np.vstack((a, b)))
    
    # 进行切分, 根据列切分hsplit, vsplit
    a = np.floor(10 * np.random.random((2, 12)))
    print(a)
    print('------')
    print(np.hsplit(a, 3))
    print('-------')
    print(np.hsplit(a, (3, 4)))
    a.reshape(12, 2)
    a.shape = (12, 2)
    print(a)
    print(np.vsplit(a, 3))
    
    
    # 等于,这两个变量名字不一样,但是指向同一个位置,改变一个也会改变另外一个
    a = np.arange(12)
    b = a
    print(b is a)
    b.shape = 3, 4
    print(a.shape)
    print(id(a))
    print(id(b))
    
    # 浅复制, 改变一个不会改变另外一个, 指向不同的位置, 但是指向相同的值, 改变里面的值都会改变
    print('--------')
    a = np.arange(12)
    c = a.view()
    print(c is a)
    c.shape = 2, 6
    print(a.shape)
    c[0, 4] = 1234
    print(a)
    print(id(a))
    print(id(b))
    # 深复制, 各自是各自的, 没有任何关系
    d = a.copy()
    print(d is a)
    d[0] = 99999
    print(d)
    print(a)
    
    # 找到每一列的最大值 axis=0 是每一列的最大值的行
    data = np.sin(np.arange(20).reshape(5, 4))
    print(data)
    
    ind = data.argmax(axis=0)
    print(ind)
    
    data_max = data[ind,range(data.shape[1])]
    print(data_max)
    
    # 扩展 行列是原来的几倍
    a = np.arange(0, 40, 10)
    print(a)
    b = np.tile(a, (3, 5))
    print(b)
    
    # 排序 按行排序 是axis=1
    a = np.array([[4, 3, 5], [1, 2, 1]])
    print(a)
    b = np.sort(a, axis=1)
    print(b)
    print(a.sort(axis=1))
    
    a = np.array([4, 3, 1, 2])
    j = np.argsort(a)
    print('-----')
    print(j)
    print('-----')
    print(a[j])```
  • 相关阅读:
    NHibernate版本不一致问题
    .NET中AOP的几种实现方案
    转播
    看来不得不来谈谈这个首页精华区了
    事件与委托
    关于字符集和字符编码以及代码页的前前后后(续)
    让电脑像人脑一样思考,谁养鱼问题断言推理解法
    关于那个脑袋的很漂漂的图形的C#版本
    大家都有头像,我来测试下我的新头像。
    浅谈JavaScript中的对象和类型(上)
  • 原文地址:https://www.cnblogs.com/jly1/p/12964156.html
Copyright © 2020-2023  润新知