• 使用k-近邻算法改进约会网站的配对效果


    ---恢复内容开始---

    《 Machine Learning 机器学习实战》的确是一本学习python,掌握数据相关技能的,不可多得的好书!!

    最近邻算法源码如下,给有需要的入门者学习,大神请绕道。

    数字识别文件

    '''
    Created on Sep 16, 2010
    kNN: k Nearest Neighbors
    
    Input:      inX: vector to compare to existing dataset (1xN)
                dataSet: size m data set of known vectors (NxM)
                labels: data set labels (1xM vector)
                k: number of neighbors to use for comparison (should be an odd number)
                
    Output:     the most popular class label
    
    @author: pbharrin
    '''
    from numpy import *
    import operator
    from os import listdir
    
    def classify0(inX, dataSet, labels, k):
        dataSetSize = dataSet.shape[0]
        diffMat = tile(inX, (dataSetSize,1)) - dataSet
        sqDiffMat = diffMat**2
        sqDistances = sqDiffMat.sum(axis=1)
        distances = sqDistances**0.5
        sortedDistIndicies = distances.argsort()     
        classCount={}          
        for i in range(k):
            voteIlabel = labels[sortedDistIndicies[i]]
            classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
        sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
        return sortedClassCount[0][0]
    
    def createDataSet():
        group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
        labels = ['A','A','B','B']
        return group, labels
    
    def file2matrix(filename):
        fr = open(filename)
        numberOfLines = len(fr.readlines())         #get the number of lines in the file
        returnMat = zeros((numberOfLines,3))        #prepare matrix to return
        classLabelVector = []                       #prepare labels return   
        fr = open(filename)
        index = 0
        for line in fr.readlines():
            line = line.strip()
            listFromLine = line.split('	')
            returnMat[index,:] = listFromLine[0:3]          # 读取前三个属性值
            classLabelVector.append(int(listFromLine[-1]))  # 读取类标签
            index += 1
        return returnMat,classLabelVector
        
    def autoNorm(dataSet):
        minVals = dataSet.min(0)
        maxVals = dataSet.max(0)
        ranges = maxVals - minVals
        normDataSet = zeros(shape(dataSet))
        m = dataSet.shape[0]
        normDataSet = dataSet - tile(minVals, (m,1))
        normDataSet = normDataSet/tile(ranges, (m,1))   #element wise divide
        return normDataSet, ranges, minVals
       
    def datingClassTest():
        hoRatio = 0.50      #hold out 10%
        datingDataMat,datingLabels = file2matrix('datingTestSet2.txt')       #load data setfrom file
        normMat, ranges, minVals = autoNorm(datingDataMat)
        m = normMat.shape[0]
        numTestVecs = int(m*hoRatio)
        errorCount = 0.0
        for i in range(numTestVecs):
            classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3)
            print "the classifier came back with: %d, the real answer is: %d" % (classifierResult, datingLabels[i])
            if (classifierResult != datingLabels[i]): errorCount += 1.0
        print "the total error rate is: %f" % (errorCount/float(numTestVecs))
        print errorCount     

    手写数字识别

    # 解析文本数据

    def img2vector(filename):
        returnVect = zeros((1,1024))
        fr = open(filename)
        for i in range(32):
            lineStr = fr.readline()
            for j in range(32):
                returnVect[0,32*i+j] = int(lineStr[j])
        return returnVect
    
    
    # 测试

     def handwritingClassTest():

        hwLabels = []
        trainingFileList = listdir('trainingDigits')           #load the training set
        m = len(trainingFileList)
        trainingMat = zeros((m,1024))
        for i in range(m):
            fileNameStr = trainingFileList[i]
            fileStr = fileNameStr.split('.')[0]     #take off .txt
            classNumStr = int(fileStr.split('_')[0])
            hwLabels.append(classNumStr)
            trainingMat[i,:] = img2vector('trainingDigits/%s' % fileNameStr)
        testFileList = listdir('testDigits')        #iterate through the test set
        errorCount = 0.0
        mTest = len(testFileList)
        for i in range(mTest):
            fileNameStr = testFileList[i]
            fileStr = fileNameStr.split('.')[0]     #take off .txt
            classNumStr = int(fileStr.split('_')[0])
            vectorUnderTest = img2vector('testDigits/%s' % fileNameStr)
            classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3)
            print "the classifier came back with: %d, the real answer is: %d" % (classifierResult, classNumStr)
            if (classifierResult != classNumStr): errorCount += 1.0
        print "
    the total number of errors is: %d" % errorCount
        print "
    the total error rate is: %f" % (errorCount/float(mTest))
    每天一小步,人生一大步!Good luck~
  • 相关阅读:
    博客用Markdown编辑器插入视频
    软件工程网络15个人作业3——案例分析
    软工网络15结对编程练习
    软件工程15个人阅读作业2
    软件工程第一次个人阅读
    Java课程设计—学生成绩管理系统(201521123005 杨雪莹)
    Java课程设计—学生成绩管理系统
    网络15软工个人作业5——软件工程总结
    软工网络15个人作业4——alpha阶段个人总结
    软件工程网络15个人作业3——案例分析
  • 原文地址:https://www.cnblogs.com/jkmiao/p/4431467.html
Copyright © 2020-2023  润新知