KMP
简要说明
- (kmp)是一个非常神奇的东西.它的(fail(next))数组(f[i])就表示(1)~(i)这个串的最长公共前缀后缀长度.根据这个(fail)数组,在匹配的时候就可以加快当前匹配位置的转移,省去一些不必要的比较.
题目
- 题意:给两个字符串(s),(t),问将(s)按照适当的方式切割后,最多能得到几个串(t)?
- 这里考虑不使用(hash)的做法.
- 在字符串(s)中找(t),用(kmp)即可.需要注意的是前后两次的串不能相交,因为两者不能被同时取到.
- 匹配的同时记录一下上一个匹配位置即可.(kmp)中,若(j=|t|),那么此时的(i)恰好为这组匹配的起点.
View code
#include"bits/stdc++.h"
using namespace std;
typedef long long LoveLive;
inline int read()
{
int out=0,fh=1;
char jp=getchar();
while ((jp>'9'||jp<'0')&&jp!='-')
jp=getchar();
if (jp=='-')
{
fh=-1;
jp=getchar();
}
while (jp>='0'&&jp<='9')
{
out=out*10+jp-'0';
jp=getchar();
}
return out*fh;
}
const int MAXN=1e3+10;
char s[MAXN],t[MAXN];
int f[MAXN];
int n,m;
int main()
{
while(~scanf("%s",s) && (strlen(s)>1 || s[0]!='#') )
{
int lspos=-0x7fffffff;
scanf("%s",t);
n=strlen(s);
m=strlen(t);
int ans=0;
f[0]=f[1]=0;
for(int i=1;i=lspos)
{
lspos=i;
++ans;
}
}
printf("%d
",ans);
}
return 0;
}
- 题意:求一个字符串的最短循环节长度.
- 这里考虑不使用(hash)的做法.
- 结论:最小循环节长度为(frac{n}{n-fail[n]}),若其为整数.否则为(|S|).
- 证明?
不会.建议感性理解或移步此处.
View code
#include
using namespace std;
typedef long long LoveLive;
inline int read()
{
int out=0,fh=1;
char jp=getchar();
while ((jp>'9'||jp<'0')&&jp!='-')
jp=getchar();
if (jp=='-')
{
fh=-1;
jp=getchar();
}
while (jp>='0'&&jp<='9')
{
out=out*10+jp-'0';
jp=getchar();
}
return out*fh;
}
const int MAXN=1e6+10;
int f[MAXN],n;
char s[MAXN];
void getfail()
{
f[0]=f[1]=0;
for(int i=1;i
- 题意:求一个字符串的最短循环节长度.最后一段可以为循环节的前缀.如(cabcabca)的最短循环节可以被定义为(cab).
- 这里考虑不使用(hash)的做法.
- 结论:这种定义下的最短循环节长度为(n-fail[n]).
- 感性证明:去掉这个长度为(fail[n])的后缀后,前面的串已经找不到严格意义的循环节.否则可以拼接在(fail[n])对应的公共前后缀上,使(fail[n])增大.此时将前面所有字符作为一个循环节.去掉的部分一定是这个循环节的前缀,满足定义的要求.
View code
#include"bits/stdc++.h"
using namespace std;
typedef long long LoveLive;
inline int read()
{
int out=0,fh=1;
char jp=getchar();
while ((jp>'9'||jp<'0')&&jp!='-')
jp=getchar();
if (jp=='-')
{
fh=-1;
jp=getchar();
}
while (jp>='0'&&jp<='9')
{
out=out*10+jp-'0';
jp=getchar();
}
return out*fh;
}
const int MAXN=1e6+10;
char s[MAXN];
int f[MAXN];
int main()
{
int n=read();
scanf("%s",s);
f[0]=f[1]=0;
for(int i=1;i
- 题意:定义一个串的(proper)前缀为它的非空且不等于自身的前缀.定义一个串(A)的周期为(Q),当且仅当(Q)为(A)的(proper)前缀,且(A)为(QQ)的前缀.求出一个串所有前缀的最大周期长度和.
- 只需要沿着(fail)指针(失配边)往前跳,跳到第一个不为(0)的位置即可,
- 可以路径压缩进行优化.
View code
#include"bits/stdc++.h"
using namespace std;
typedef long long LoveLive;
inline int read()
{
int out=0,fh=1;
char jp=getchar();
while ((jp>'9'||jp<'0')&&jp!='-')
jp=getchar();
if (jp=='-')
{
fh=-1;
jp=getchar();
}
while (jp>='0'&&jp<='9')
{
out=out*10+jp-'0';
jp=getchar();
}
return out*fh;
}
const int MAXN=1e6+10;
char s[MAXN];
int n;
int f[MAXN];
int main()
{
n=read();
scanf("%s",s);
f[0]=f[1]=0;
for(int i=1;i
- 题意:在一个字符串中,规定一个形如 (A+B+A) 的子串是特殊的,其中有(|A|geq k,|B|geq 1).给定一个字符串 (S) 和常数 (k) ,求出 (S) 特殊的子串数目.(|S|leq 1.5*10^4.)
- 此题的数据范围 (n^2) 刚好够卡过去.人,要有信仰.
- 暂时不知道有没有更优秀的做法,但 (n^2) 的做法的确是相当无脑的.
- 枚举特殊子串的左端点 (x) ,求出以 (x) 为首的后缀的 (fail) 数组.计算的时候注意细节,要满足当前的公共前后缀长度大于 (k) ,且小于这个串的一半,保证 (|B|geq 1).
View code
#include"bits/stdc++.h"
using namespace std;
typedef long long LoveLive;
inline int read()
{
int out=0,fh=1;
char jp=getchar();
while ((jp>'9'||jp<'0')&&jp!='-')
jp=getchar();
if (jp=='-')
{
fh=-1;
jp=getchar();
}
while (jp>='0'&&jp<='9')
{
out=out*10+jp-'0';
jp=getchar();
}
return out*fh;
}
const int MAXN=1.5e4+10;
char s[MAXN];
int n,k;
int ans=0;
int f[MAXN];
void kmp(int x)
{
for(int i=1;i<=n;++i)
f[i]=x-1;
for(int i=x+1;i<=n;++i)
{
int j=f[i-1];
while(j!=x-1 && s[i]!=s[j+1])
j=f[j];
if(s[i]==s[j+1])
++j;
f[i]=j;
}
int j=f[n];
for(int i=x+1;i<=n;++i)
{
while(j!=x-1 && s[i]!=s[j+1])
j=f[j];
if(s[i]==s[j+1])
++j;
while((j-x+1)*2>=(i-x+1))
j=f[j];
if(j-x+1>=k)
++ans;
}
}
int main()
{
scanf("%s",s+1);
k=read();
n=strlen(s+1);
for(int i=1;i<=n;++i)
kmp(i);
printf("%d
",ans);
return 0;
}
- 题意:给出两个字符串 (S) 和 (T),每次从前往后找到 (S) 中的一个 (T) 并将其删除,空缺位依次向前补齐,直到 (S) 串中不含 (T) 串.求最终的 (S) 串.
- 用栈维护串(S),匹配成功时从栈顶开始删除.因为要删除多个,所以要用手写的栈.
- 匹配的过程可以用(kmp)或(hash)进行优化.
View code
#include"bits/stdc++.h"
using namespace std;
typedef long long LoveLive;
inline int read()
{
int out=0,fh=1;
char jp=getchar();
while ((jp>'9'||jp<'0')&&jp!='-')
jp=getchar();
if (jp=='-')
{
fh=-1;
jp=getchar();
}
while (jp>='0'&&jp<='9')
{
out=out*10+jp-'0';
jp=getchar();
}
return out*fh;
}
const int MAXN=1e6+10;
char s[MAXN],t[MAXN];
char stk[MAXN];
int tp=0;
int f[MAXN],g[MAXN];
int n,m;
int main()
{
scanf("%s",s+1);
scanf("%s",t+1);
n=strlen(s+1);
m=strlen(t+1);
f[0]=f[1]=0;
int j=0;
for(int i=2;i<=m;++i)
{
while(j && t[i]!=t[j+1])
j=f[j];
if(t[j+1]==t[i])
++j;
f[i]=j;
}
for(int i=1;i<=n;++i)
{
stk[++tp]=s[i];
while(j && t[j+1]!=stk[tp])
j=f[j];
if(t[j+1]==stk[tp])
++j;
g[tp]=j;
if(g[tp]==m)
tp-=m,j=g[tp];
}
for(int i=1;i<=tp;++i)
putchar(stk[i]);
puts("");
return 0;
}