• [NBUT 1224 Happiness Hotel 佩尔方程最小正整数解]连分数法解Pell方程


    题意:求方程x2-Dy2=1的最小正整数解

    思路:用连分数法解佩尔方程,关键是找出√d的连分数表示的循环节。具体过程参见:http://m.blog.csdn.net/blog/wh2124335/8871535

    • 当d为完全平方数时无解
    • 将√d表示成连分数的形式,例如:
    • 当d不为完全平方数时,√d为无理数,那么√d总可以表示成:
    • 当n为偶数时,x0=p,y0=q;当n为奇数时,x0=2p2+1,y0=2pq

    求d在1000以内佩尔方程的最小正整数解的c++打表程序(正常跑比较慢,这个题需要离线打表):

      1
      2
      3
      4
      5
      6
      7
      8
      9
     10
     11
     12
     13
     14
     15
     16
     17
     18
     19
     20
     21
     22
     23
     24
     25
     26
     27
     28
     29
     30
     31
     32
     33
     34
     35
     36
     37
     38
     39
     40
     41
     42
     43
     44
     45
     46
     47
     48
     49
     50
     51
     52
     53
     54
     55
     56
     57
     58
     59
     60
     61
     62
     63
     64
     65
     66
     67
     68
     69
     70
     71
     72
     73
     74
     75
     76
     77
     78
     79
     80
     81
     82
     83
     84
     85
     86
     87
     88
     89
     90
     91
     92
     93
     94
     95
     96
     97
     98
     99
    100
    101
    102
    103
    104
    105
    106
    107
    108
    109
    110
    111
    112
    113
    114
    115
    116
    117
    118
    119
    120
    121
    122
    123
    124
    125
    126
    127
    128
    129
    130
    131
    132
    133
    134
    135
    136
    137
    138
    139
    140
    141
    142
    143
    144
    145
    146
    147
    148
    149
    150
    151
    152
    153
    154
    155
    156
    157
    158
    159
    160
    161
    162
    163
    164
    165
    166
    167
    168
    169
    170
    171
    172
    173
    174
    175
    176
    177
    178
    179
    180
    181
    182
    183
    184
    185
    186
    187
    188
    189
    190
    191
    192
    193
    194
    195
    196
    197
    198
    199
    200
    201
    202
    203
    204
    205
    206
    207
    208
    209
    210
    211
    212
    213
    214
    215
    216
    217
    218
    219
    220
    221
    222
    223
    224
    225
    226
    227
    228
    229
    230
    231
    232
    233
    234
    235
    236
    237
    238
    239
    240
    241
    242
    243
    244
    245
    246
    247
    248
    249
    250
    251
    252
    253
    254
    255
    256
    257
    258
    259
    260
    261
    262
    263
    264
    265
    266
    267
    268
    269
    270
    271
    272
    273
    274
    275
    276
    277
    278
    279
    280
    281
    282
    283
    284
    285
    286
    287
    288
    289
    290
    291
    292
    293
    294
    295
    296
    297
    298
    299
    300
    301
    302
    303
    304
    305
    306
    307
    308
    309
    310
    311
    312
    313
    314
    315
    316
    317
    318
    319
    320
    321
    322
    323
    324
    325
    326
    327
    328
    329
    330
    331
    332
    333
    334
    335
    336
    337
    338
    339
    340
    341
    342
    343
    344
    345
    346
    347
    348
    349
    350
    351
    352
    353
    354
    355
    356
    357
    358
    359
    360
    361
    362
    363
    364
    365
    366
    367
    368
    369
    370
    371
    372
    373
    374
    375
    376
    377
    378
    379
    380
    381
    382
    383
    384
    385
    386
    387
    388
    #pragma comment(linker, "/STACK:10240000")
    #include <map>
    #include <set>
    #include <cmath>
    #include <ctime>
    #include <deque>
    #include <queue>
    #include <stack>
    #include <vector>
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    
    using namespace std;
    
    #define X                   first
    #define Y                   second
    #define pb                  push_back
    #define mp                  make_pair
    #define all(a)              (a).begin(), (a).end()
    #define fillchar(a, x)      memset(a, x, sizeof(a))
    #define copy(a, b)          memcpy(a, b, sizeof(a))
    
    typedef long long ll;
    typedef pair<int, int> pii;
    typedef unsigned long long ull;
    
    #ifndef ONLINE_JUDGE
    void RI(vector<int>&a,int n){a.resize(n);for(int i=0;i<n;i++)scanf("%d",&a[i]);}
    void RI(){}void RI(int&X){scanf("%d",&X);}template<typename...R>
    void RI(int&f,R&...r){RI(f);RI(r...);}void RI(int*p,int*q){int d=p<q?1:-1;
    while(p!=q){scanf("%d",p);p+=d;}}void print(){cout<<endl;}template<typename T>
    void print(const T t){cout<<t<<endl;}template<typename F,typename...R>
    void print(const F f,const R...r){cout<<f<<", ";print(r...);}template<typename T>
    void print(T*p, T*q){int d=p<q?1:-1;while(p!=q){cout<<*p<<", ";p+=d;}cout<<endl;}
    #endif
    template<typename T>bool umax(T&a, const T&b){return b<=a?false:(a=b,true);}
    template<typename T>bool umin(T&a, const T&b){return b>=a?false:(a=b,true);}
    
    const double PI = acos(-1.0);
    const int INF = 1e9 + 7;
    const double EPS = 1e-12;
    
    /* -------------------------------------------------------------------------------- */
    
    struct BigInt {
        const static int maxI = 1e8;
        const static int Len = 8;
        typedef vector<int> vi;
        typedef long long LL;
        vi num;
        bool symbol;
    
        BigInt() {
            num.clear();
            symbol = 0;
        }
        BigInt(int x) {
            symbol = 0;
            if (x < 0) {
                symbol = 1;
                x = -x;
            }
            num.push_back(x % maxI);
            if (x >= maxI) num.push_back(x / maxI);
        }
        BigInt(bool s, vi x) {
            symbol = s;
            num = x;
        }
        BigInt(char s[]) {
            int len = strlen(s), x = 1, sum = 0, p = s[0] == '-';
            symbol = p;
            for (int i = len - 1; i >= p; i--) {
                sum += (s[i] - '0') * x;
                x *= 10;
                if (x == 1e8 || i == p) {
                    num.push_back(sum);
                    sum = 0;
                    x = 1;
                }
            }
            while (num.back() == 0 && num.size() > 1) num.pop_back();
        }
    
        void push(int x) {
            num.push_back(x);
        }
    
        BigInt abs() const {
            return BigInt(false, num);
        }
    
        bool smaller(const vi &a, const vi &b) const {
            if (a.size() != b.size()) return a.size() < b.size();
            for (int i = a.size() - 1; i >= 0; i--) {
                if (a[i] != b[i]) return a[i] < b[i];
            }
            return 0;
        }
    
        bool operator < (const BigInt &p) const {
            if (symbol && !p.symbol) return true;
            if (!symbol && p.symbol) return false;
            if (symbol && p.symbol) return smaller(p.num, num);
            return smaller(num, p.num);
        }
    
        bool operator > (const BigInt &p) const {
            return p < *this;
        }
    
        bool operator == (const BigInt &p) const {
            return !(p < *this) && !(*this < p);
        }
    
        bool operator != (const BigInt &p) const {
            return *this < p || p < *this;
        }
    
        bool operator >= (const BigInt &p) const {
            return !(*this < p);
        }
    
        bool operator <= (const BigInt &p) const {
            return !(p < *this);
        }
    
        vi add(const vi &a, const vi &b) const {
            vi c;
            c.clear();
            int x = 0;
            for (int i = 0; i < a.size(); i++) {
                x += a[i];
                if (i < b.size()) x += b[i];
                c.push_back(x % maxI);
                x /= maxI;
            }
            for (int i = a.size(); i < b.size(); i++) {
                x += b[i];
                c.push_back(x % maxI);
                x /= maxI;
            }
            if (x) c.push_back(x);
            while (c.back() == 0 && c.size() > 1) c.pop_back();
            return c;
        }
    
        vi sub(const vi &a, const vi &b) const {
            vi c;
            c.clear();
            int x = 1;
            for (int i = 0; i < b.size(); i++) {
                x += maxI + a[i] - b[i] - 1;
                c.push_back(x % maxI);
                x /= maxI;
            }
            for (int i = b.size(); i < a.size(); i++) {
                x += maxI + a[i] - 1;
                c.push_back(x % maxI);
                x /= maxI;
            }
            while (c.back() == 0 && c.size() > 1) c.pop_back();
            return c;
        }
    
        vi mul(const vi &a, const vi &b) const {
            vi c;
            c.resize(a.size() + b.size());
            for (int i = 0; i < a.size(); i++) {
                for (int j = 0; j < b.size(); j++) {
                    LL tmp = (LL)a[i] * b[j] + c[i + j];
                    c[i + j + 1] += tmp / maxI;
                    c[i + j] = tmp % maxI;
                }
            }
            while (c.back() == 0 && c.size() > 1) c.pop_back();
            return c;
        }
    
        vi div(const vi &a, const vi &b) const {
            vi c(a.size()), x(1, 0), y(1, 0), z(1, 0), t(1, 0);
            y.push_back(1);
            for (int i = a.size() - 1; i >= 0; i--) {
                z[0] = a[i];
                x = add(mul(x, y), z);
                if (smaller(x, b)) continue;
                int l = 1, r = maxI - 1;
                while (l < r) {
                    int m = (l + r + 1) >> 1;
                    t[0] = m;
                    if (smaller(x, mul(b, t))) r = m - 1;
                    else l = m;
                }
                c[i] = l;
                t[0] = l;
                x = sub(x, mul(b, t));
            }
            while (c.back() == 0 && c.size() > 1) c.pop_back();
            return c;
        }
    
        BigInt operator + (const BigInt &p) const {
            if (!symbol && !p.symbol) return BigInt(false, add(num, p.num));
            if (!symbol && p.symbol) {
                return *this >= p.abs() ?
                BigInt(false, sub(num, p.num)) : BigInt(true, sub(p.num, num));
            }
            if (symbol && !p.symbol) {
                return (*this).abs() > p ?
                BigInt(true, sub(num, p.num)) : BigInt(false, sub(p.num, num));
            }
            return BigInt(true, add(num, p.num));
        }
    
        BigInt operator - (const BigInt &p) const {
            return *this + BigInt(!p.symbol, p.num);
        }
    
        BigInt operator * (const BigInt &p) const {
            BigInt res(symbol ^ p.symbol, mul(num, p.num));
            if (res.symbol && res.num.size() == 1 && res.num[0] == 0)
                res.symbol = false;
            return res;
        }
    
        BigInt operator / (const BigInt &p) const {
            if (p == BigInt(0)) return p;
            BigInt res(symbol ^ p.symbol, div(num, p.num));
            if (res.symbol && res.num.size() == 1 && res.num[0] == 0)
                res.symbol = false;
            return res;
        }
    
        BigInt operator % (const BigInt &p) const {
            return *this - *this / p * p;
        }
    
        void show() const {
            if (symbol) putchar('-');
            printf("%d", num[num.size() - 1]);
            for (int i = num.size() - 2; i >= 0; i--) {
                printf("%08d", num[i]);
            }
            //putchar('
    ');
        }
    
        int TotalDigit() const {
            int x = num[num.size() - 1] / 10, t = 1;
            while (x) {
                x /= 10;
                t++;
            }
            return t + (num.size() - 1) * Len;
        }
    
    };
    
    template<typename T>
    T gcd(T a, T b) {
        return b == 0? a : gcd(b, a % b);
    }
    
    template<typename T>
    struct  Fraction {
        T a, b;
        Fraction(T a, T b) {
            T g = gcd(a, b);
            this->a = a / g;
            this->b = b / g;
            if (this->b < 0) {
                this->a = this->a * T(- 1);
                this->b = this->b * T(- 1);
            }
        }
        Fraction(T a) {
            this->a = a;
            this->b = 1;
        }
        Fraction() {}
        Fraction operator + (const Fraction &that) const {
            T x = a * that.b + b * that.a, y = b * that.b;
            return Fraction(x, y);
        }
        Fraction operator - (const Fraction &that) const {
            T x = a * that.b - b * that.a, y = b * that.b;
            return Fraction(x, y);
        }
        Fraction operator * (const Fraction &that) const {
            T x = a * that.a, y = b * that.b;
            return Fraction(x, y);
        }
        Fraction operator / (const Fraction &that) const {
            T x = a * that.b, y = b * that.a;
            return Fraction(x, y);
        }
        Fraction operator += (const Fraction &that)  {
            return *this = *this + that;
        }
        Fraction operator -= (const Fraction &that)  {
            return *this = *this - that;
        }
        Fraction operator *= (const Fraction &that)  {
            return *this = *this * that;
        }
        Fraction operator /= (const Fraction &that)  {
            return *this = *this / that;
        }
        Fraction operator ! () const {
            return Fraction(b, a);
        }
        bool operator == (const Fraction &that) const {
            return a == that.a && b == that.b;
        }
        bool operator != (const Fraction &that) const {
            return a != that.a || b != that.b;
        }
    };
    
    template<typename T>
    T getInt(Fraction<T> a, T d, Fraction<T> b) {
        T Min = 0, Max;
        Fraction<T> buf = a * d + b;
        Max = buf.a / buf.b;
        while (Min < Max) {
            T Mid = (Min + Max + 1) / 2;
            buf = (b - Mid) * (b - Mid);
            buf = buf / a / a;
            if (buf.a <= buf.b * d) Min = Mid;
            else Max = Mid - 1;
        }
        return Min;
    }
    
    void work(int n) {
        int k = (int)sqrt(n + 0.5);
        if (k * k == n) {
            printf("no solution");
            return ;
        }
        Fraction<BigInt> a(1), b(0), aa, bb;
        BigInt d(n);
        vector<BigInt> R;
        BigInt t = getInt(a, d, b);
        aa = a / (a * a * d - (b - t) * (b - t));
        bb = (b - t) * BigInt(- 1) / (a * a * d - (b - t) * (b - t));
        a = aa;
        b = bb;
        do {
            R.pb(t);
            t = getInt(a, d, b);
            aa = a / (a * a * d - (b - t) * (b - t));
            bb = (b - t) * BigInt(- 1) / (a * a * d - (b - t) * (b - t));
            a = aa;
            b = bb;
        } while (t != R[0] * 2);
        Fraction<BigInt> ans(R[R.size() - 1]);
        for (int i = 1; i < R.size(); i ++) {
            ans = !ans + R[R.size() - i - 1];
        }
        BigInt x0 = ans.a, y0 = ans.b;
        if (R.size() & 1) {
            x0 = ans.a * ans.a * 2 + 1;
            y0 = ans.a * ans.b * 2;
        }
        x0.show();
    }
    
    
    int main() {
    #ifndef ONLINE_JUDGE
        freopen("in.txt", "r", stdin);
        freopen("out.txt", "w", stdout);
    #endif // ONLINE_JUDGE
        int n;
        puts("char ans[][100] = {"", ");
        for (int i = 1; i <= 1000; i ++) {
            printf(""");
            work(i);
            printf("", ");
            if (i % 20 == 0) puts("");
        }
        puts("
    };");
        return 0;
    }
    
  • 相关阅读:
    JavaScript 数组去重
    Javascript数组 reduce() 方法
    Vue事件总线(EventBus)
    前端多媒体-音频
    前端多媒体-视频
    VUE3.0 总结
    el-select地区区号选择
    vue中点击获取相应元素
    Markdown 语法
    Codeforces Round #295 (Div. 2) B. Two Buttons 520B
  • 原文地址:https://www.cnblogs.com/jklongint/p/4743778.html
Copyright © 2020-2023  润新知