• [hdu5396 Expression]区间DP


    题意:给一个表达式,求所有的计算顺序产生的结果总和

    思路:比较明显的区间dp,令dp[l][r]为闭区间[l,r]的所有可能的结果和,考虑最后一个符号的位置k,k必须在l,r之间,则l≤k<r,dp[l][r]=Σ{dp[l][k]?dp[k+1][r]}*(r-l-1)!/[(k-l)!(r-k-1)!],其中(r-l-1)!/[(k-l)!(r-k-1)!]表示从左区间和右区间选择符号的不同方法总数(把左右区间看成整体,那么符号的选择在整体间也有顺序,内部的顺序不用管,那是子问题需要考虑的),相当于(k-l)个0和(r-k-1)个1放一起的不同排列方法总数。

    对花括号里面的'?'分为三种情况:

    1. '+'  假设左区间有x种可能的方法,右区间有y种可能的方法,由于分配律的存在,左边的所有结果和会重复计算y次,右边的所有结果和会重复计算x次,而左边共(k-l)个符号,右边共(r-k-1)个符号,所以合并后的答案dp[l][r]=dp[l][k]*(r-k-1)!+dp[k+1][r]*(k-l)!
    2. '-'   与'+'类似
    3. '*'   由分配律,合并后的答案dp[l][r]=dp[l][k]*dp[k+1][r]
    #pragma comment(linker, "/STACK:10240000")
    #include <map>
    #include <set>
    #include <cmath>
    #include <ctime>
    #include <deque>
    #include <queue>
    #include <stack>
    #include <vector>
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    
    using namespace std;
    
    #define X                   first
    #define Y                   second
    #define pb                  push_back
    #define mp                  make_pair
    #define all(a)              (a).begin(), (a).end()
    #define fillchar(a, x)      memset(a, x, sizeof(a))
    #define copy(a, b)          memcpy(a, b, sizeof(a))
    
    typedef long long ll;
    typedef pair<int, int> pii;
    typedef unsigned long long ull;
    
    //#ifndef ONLINE_JUDGE
    void RI(vector<int>&a,int n){a.resize(n);for(int i=0;i<n;i++)scanf("%d",&a[i]);}
    void RI(){}void RI(int&X){scanf("%d",&X);}template<typename...R>
    void RI(int&f,R&...r){RI(f);RI(r...);}void RI(int*p,int*q){int d=p<q?1:-1;
    while(p!=q){scanf("%d",p);p+=d;}}void print(){cout<<endl;}template<typename T>
    void print(const T t){cout<<t<<endl;}template<typename F,typename...R>
    void print(const F f,const R...r){cout<<f<<", ";print(r...);}template<typename T>
    void print(T*p, T*q){int d=p<q?1:-1;while(p!=q){cout<<*p<<", ";p+=d;}cout<<endl;}
    //#endif
    template<typename T>bool umax(T&a, const T&b){return b<=a?false:(a=b,true);}
    template<typename T>bool umin(T&a, const T&b){return b>=a?false:(a=b,true);}
    
    const double PI = acos(-1.0);
    const int INF = 1e9 + 7;
    const double EPS = 1e-12;
    
    /* -------------------------------------------------------------------------------- */
    
    template<int mod>
    struct ModInt {
        const static int MD = mod;
        int x;
        ModInt(ll x = 0): x(x % MD) {}
        int get() { return x; }
    
        ModInt operator + (const ModInt &that) const { int x0 = x + that.x; return ModInt(x0 < MD? x0 : x0 - MD); }
        ModInt operator - (const ModInt &that) const { int x0 = x - that.x; return ModInt(x0 < MD? x0 + MD : x0); }
        ModInt operator * (const ModInt &that) const { return ModInt((long long)x * that.x % MD); }
        ModInt operator / (const ModInt &that) const { return *this * that.inverse(); }
    
        ModInt operator += (const ModInt &that) { x += that.x; if (x >= MD) x -= MD; }
        ModInt operator -= (const ModInt &that) { x -= that.x; if (x < 0) x += MD; }
        ModInt operator *= (const ModInt &that) { x = (long long)x * that.x % MD; }
        ModInt operator /= (const ModInt &that) { *this = *this / that; }
    
        ModInt inverse() const {
            int a = x, b = MD, u = 1, v = 0;
            while(b) {
                int t = a / b;
                a -= t * b; std::swap(a, b);
                u -= t * v; std::swap(u, v);
            }
            if(u < 0) u += MD;
            return u;
        }
    
    };
    typedef ModInt<1000000007> mint;
    
    const int maxn = 1e2 + 7;
    const int md = 1e9 + 7;
    mint dp[maxn][maxn], fac[maxn], facinv[maxn];
    int a[maxn];
    char s[maxn];
    
    mint get(mint a, char ch, mint b, mint ca, mint cb) {
        if (ch == '+') return a * cb + b * ca;
        if (ch == '-') return a * cb - b * ca;
        if (ch == '*') return a * b;
    }
    
    void init() {
        fac[0] = facinv[0] = 1;
        for (int i = 1; i < maxn; i ++) fac[i] = fac[i - 1] * i;
        for (int i = 1; i < maxn; i ++) facinv[i] = facinv[i - 1] / i;
    }
    
    int main() {
    #ifndef ONLINE_JUDGE
        freopen("in.txt", "r", stdin);
        //freopen("out.txt", "w", stdout);
    #endif // ONLINE_JUDGE
        int n;
        init();
        while (cin >> n) {
            for (int i = 1; i <= n; i ++) {
                scanf("%d", a + i);
            }
            scanf("%s", s);
            fillchar(dp, 0);
            for (int i = 1; i <= n; i ++) dp[i][i] = a[i];
            for (int L = 2; L <= n; L ++) {
                for (int i = 1; i + L - 1 <= n; i ++) {
                    int j = i + L - 1;
                    for (int k = i; k < j; k ++) {
                        dp[i][j] += get(dp[i][k], s[k - 1], dp[k + 1][j], fac[k - i], fac[j - k - 1]) * fac[j - i - 1] * facinv[k - i] * facinv[j - k - 1];
                    }
                }
            }
            printf("%d
    ", dp[1][n].get());
        }
        return 0;
    }
    
  • 相关阅读:
    原生js面试题
    ZJOI2017day2退役战
    uoj6
    uoj5
    uoj2
    uoj1
    论逗逼的自我修养之ZJOI2017Day1
    noip2016滚粗记
    统计损失
    珍珠项链
  • 原文地址:https://www.cnblogs.com/jklongint/p/4740849.html
Copyright © 2020-2023  润新知