• [hdu4629 Burning]三角形面积并,扫描线


    题意:给n个三角形,分别求覆盖1次~n次的总面积

    思路: 对每个y坐标作一条平行于x轴的直线,按直线从下往上处理,每两条直线之间为若干梯形(也可以是三角形)首尾相连的情况,从左扫到右时,用一个变量cnt记录当前区域被覆盖的次数,遇到入边cnt++,遇到出边cnt--,边扫边更新答案。入边表示这条边的右边在三角形内部,出边表示这条边的右边在三角形的外部。思路并不复杂,只是代码稍长点。

    #include <map>
    #include <set>
    #include <cmath>
    #include <ctime>
    #include <deque>
    #include <queue>
    #include <stack>
    #include <vector>
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    
    using namespace std;
    
    #define X                   first
    #define Y                   second
    #define pb                  push_back
    #define mp                  make_pair
    #define all(a)              (a).begin(), (a).end()
    #define fillchar(a, x)      memset(a, x, sizeof(a))
    #define copy(a, b)          memcpy(a, b, sizeof(a))
    
    typedef long long ll;
    typedef pair<int, int> pii;
    typedef unsigned long long ull;
    
    //#ifndef ONLINE_JUDGE
    void RI(vector<int>&a,int n){a.resize(n);for(int i=0;i<n;i++)scanf("%d",&a[i]);}
    void RI(){}void RI(int&X){scanf("%d",&X);}template<typename...R>
    void RI(int&f,R&...r){RI(f);RI(r...);}void RI(int*p,int*q){int d=p<q?1:-1;
    while(p!=q){scanf("%d",p);p+=d;}}void print(){cout<<endl;}template<typename T>
    void print(const T t){cout<<t<<endl;}template<typename F,typename...R>
    void print(const F f,const R...r){cout<<f<<", ";print(r...);}template<typename T>
    void print(T*p, T*q){int d=p<q?1:-1;while(p!=q){cout<<*p<<", ";p+=d;}cout<<endl;}
    //#endif
    template<typename T>bool umax(T&a, const T&b){return b<=a?false:(a=b,true);}
    template<typename T>bool umin(T&a, const T&b){return b>=a?false:(a=b,true);}
    template<typename T>
    void V2A(T a[],const vector<T>&b){for(int i=0;i<b.size();i++)a[i]=b[i];}
    template<typename T>
    void A2V(vector<T>&a,const T b[]){for(int i=0;i<a.size();i++)a[i]=b[i];}
    
    const double PI = acos(-1.0);
    const int INF = 1e9 + 7;
    const double EPS = 1e-8;
    
    /* -------------------------------------------------------------------------------- */
    
    const int maxn = 57;
    
    int dcmp(double a) {
        if (abs(a) < EPS) return 0;
        return a > 0? 1 : -1;
    }
    
    struct Point {
        double x, y;
        void read() {
            int x, y;
            scanf("%d%d", &x, &y);
            this->x = x;
            this->y = y;
        }
        Point(double x, double y) {
            this->x = x;
            this->y = y;
        }
        Point() {}
        Point operator - (const Point &that) const {
            return Point(this->x - that.x, this->y - that.y);
        }
        bool operator < (const Point &that) const {
            return dcmp(this->y - that.y) < 0 || dcmp(this->y - that.y) == 0 &&
                    dcmp(this->x - that.x) < 0;
        }
        Point operator * (const double &m) const {
            return Point(this->x * m, this->y * m);
        }
    };
    struct Segment {
        Point a, b;
        Segment(Point a, Point b) {
            this->a = a;
            this->b = b;
        }
        Segment() {}
        bool operator < (const Segment &that) const {
            return dcmp(this->a.x + this->b.x - that.a.x - that.b.x) < 0;
        }
    };
    Point point[maxn * maxn * 9];
    Segment seg[maxn * 3];
    int type[maxn * 3];
    double ans[maxn];
    
    double cross(const Point &a, const Point &b) {
        return a.x * b.y - a.y * b.x;
    }
    
    bool onMid(Point a, Point b, Point c) {
        return dcmp(cross(c - a, b - a)) == 0;
    }
    bool onLeft(Point a, Point b, Point c) {
        return dcmp(cross(c - a, b - a)) < 0;
    }
    bool Intersect(Segment A, Segment B) {
        int r1 = dcmp(cross(A.b - A.a, B.a - A.a));
        int r2 = dcmp(cross(A.b - A.a, B.b - A.a));
        int r3 = dcmp(cross(B.b - B.a, A.a - B.a));
        int r4 = dcmp(cross(B.b - B.a, A.b - B.a));
        return (r1 ^ r2) || (r3 ^ r4);
    }
    Point getLineIntersection(Segment A, Segment B) {
        Point u = A.a - B.a, v = A.b - A.a, w = B.b - B.a;
        double t = cross(w, u) / cross(v, w);
        return A.a - v * -t;
    }
    double Area(Segment A, Segment B) {
        return fabs((A.a.x - B.a.x + A.b.x - B.b.x) * (A.a.y - A.b.y) / 2);
    }
    int main() {
    #ifndef ONLINE_JUDGE
        freopen("in.txt", "r", stdin);
        //freopen("out.txt", "w", stdout);
    #endif // ONLINE_JUDGE
        int T, n, cs, cp;
        cin >> T;
        while (T --) {
            cin >> n;
            cp = cs = 0;
            for (int i = 0; i < n; i ++) {
                Point p[3];
                for (int j = 0; j < 3; j ++) p[j].read();
                if (onMid(p[0], p[1], p[2])) continue;
                sort(p, p + 3);
                seg[cs ++] = Segment(p[0], p[1]);
                seg[cs ++] = Segment(p[0], p[2]);
                seg[cs ++] = Segment(p[1], p[2]);
                if (onLeft(p[0], p[2], p[1])) {
                    type[cs - 3] = type[cs - 1] = 1;
                    type[cs - 2] = -1;
                }
                else {
                    type[cs - 3] = type[cs - 1] = -1;
                    type[cs - 2] = 1;
                }
            }
            for (int i = 0; i < cs; i ++) {
                for (int j = i + 1; j < cs; j ++) {
                    if (Intersect(seg[i], seg[j]))
                        point[cp ++] = getLineIntersection(seg[i], seg[j]);
                }
            }
            sort(point, point + cp);
            vector<double> Y;
            for (int i = 0; i < cp; i ++) {
                if (!i || dcmp(point[i].y - point[i - 1].y) != 0) Y.pb(point[i].y);
            }
            fillchar(ans, 0);
            for (int i = 1; i < Y.size(); i ++) {
                vector<pair<Segment, int> > S;
                for (int j = 0; j < cs; j ++) {
                    if (dcmp(seg[j].a.y - Y[i - 1]) <= 0 && dcmp(seg[j].b.y - Y[i]) >= 0) {
                        Point a = seg[j].a, b = seg[j].b;
                        double d = (b.x - a.x) / (b.y - a.y);
                        double x1 = a.x + d * (Y[i - 1] - a.y), x2 = a.x + d * (Y[i] - a.y);
                        S.pb(mp(Segment(Point(x1, Y[i - 1]), Point(x2, Y[i])), type[j]));
                    }
                }
                sort(all(S));
                int cnt = 0;
                for (int j = 0; j < S.size(); j ++) {
                    if (cnt) ans[cnt] += Area(S[j - 1].X, S[j].X);
                    cnt += S[j].Y;
                }
            }
            for (int i = 1; i <= n; i ++) {
                printf("%.10f
    ", ans[i]);
            }
        }
    
        return 0;
    }
    
  • 相关阅读:
    更新github上的代码
    使用git上传项目代码到github
    解决jenkins插件列表为空的问题
    P3200 [HNOI2009]有趣的数列
    BZOJ3907 网格
    解决SDK下载时速度过慢的问题
    实用的Android代码片段集合(精)
    广播与服务(二)
    action使用大全
    广播与服务(一)
  • 原文地址:https://www.cnblogs.com/jklongint/p/4724561.html
Copyright © 2020-2023  润新知