• [hdu4628 Pieces]二进制子状态,DP


    题意:给一个长度为16的字符串,每次从里面删掉一个回文序列,求最少需要几次才能删掉所有字符

    思路:二进制表示每个字符的状态,那么从1个状态到另一个状态有两种转移方式,一是枚举所有合法的回文子序列,判断是否是当前状态的子状态,再转移,二是枚举当前状态的所有子状态来转移。前者最坏复杂度O(2^16*2^16) = O(几十亿),而后者最坏只有(i:1->16)Σ2iC(16,i) = O(几千万)。

     1
     2
     3
     4
     5
     6
     7
     8
     9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    90
    #include <map>
    #include <set>
    #include <cmath>
    #include <ctime>
    #include <deque>
    #include <queue>
    #include <stack>
    #include <vector>
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    
    using namespace std;
    
    #define X                   first
    #define Y                   second
    #define pb                  push_back
    #define mp                  make_pair
    #define all(a)              (a).begin(), (a).end()
    #define fillchar(a, x)      memset(a, x, sizeof(a))
    #define copy(a, b)          memcpy(a, b, sizeof(a))
    
    typedef long long ll;
    typedef pair<int, int> pii;
    typedef unsigned long long ull;
    
    #ifndef ONLINE_JUDGE
    void RI(vector<int>&a,int n){a.resize(n);for(int i=0;i<n;i++)scanf("%d",&a[i]);}
    void RI(){}void RI(int&X){scanf("%d",&X);}template<typename...R>
    void RI(int&f,R&...r){RI(f);RI(r...);}void RI(int*p,int*q){int d=p<q?1:-1;
    while(p!=q){scanf("%d",p);p+=d;}}void print(){cout<<endl;}template<typename T>
    void print(const T t){cout<<t<<endl;}template<typename F,typename...R>
    void print(const F f,const R...r){cout<<f<<", ";print(r...);}template<typename T>
    void print(T*p, T*q){int d=p<q?1:-1;while(p!=q){cout<<*p<<", ";p+=d;}cout<<endl;}
    #endif
    template<typename T>bool umax(T&a, const T&b){return b<=a?false:(a=b,true);}
    template<typename T>bool umin(T&a, const T&b){return b>=a?false:(a=b,true);}
    template<typename T>
    void V2A(T a[],const vector<T>&b){for(int i=0;i<b.size();i++)a[i]=b[i];}
    template<typename T>
    void A2V(vector<T>&a,const T b[]){for(int i=0;i<a.size();i++)a[i]=b[i];}
    
    const double PI = acos(-1.0);
    const int INF = 1e9 + 7;
    
    /* -------------------------------------------------------------------------------- */
    
    char s[20];
    int n, dp[1 << 20];
    
    void init() {
        for (int i = 0; i < (1 << n); i ++) dp[i] = INF;
        dp[0] = 1;
        for (int i = 1; i < (1 << n); i ++) {
            int j, k;
            for (j = n - 1; j >= 0; j --) {
                if (i & (1 << j)) break;
            }
            for (k = 0; k < n; k ++) {
                if (i & (1 << k)) break;
            }
            if (s[j] == s[k] && dp[i ^ (1 << j) ^ (1 << k)] < INF)
                dp[i] = dp[i ^ (1 << j) ^ (1 << k)];
            if (j == k) dp[i] = 1;
        }
    }
    
    int main() {
    #ifndef ONLINE_JUDGE
        freopen("in.txt", "r", stdin);
        //freopen("out.txt", "w", stdout);
    #endif // ONLINE_JUDGE
        int T;
        cin >> T;
        while (T --) {
            scanf("%s", s);
            n = strlen(s);
            init();
            for (int i = 1; i < (1 << n); i ++) {
                for (int j = i; j; j = (j - 1) & i) {
                    umin(dp[i], dp[i ^ j] + dp[j]);
                }
            }
            cout << dp[(1 << n) - 1] << endl;
        }
        return 0;
    }
    
  • 相关阅读:
    树剖学习笔记
    网络命令
    shell编程
    Shell 脚本常用命令
    WP7系统托盘和应用程序栏
    Ajax的同步与异步
    WP7推送通知服务
    (转)Silverlight控件关系理解
    (转) silverlight 样式学习
    (转C#中Enum用法小结)
  • 原文地址:https://www.cnblogs.com/jklongint/p/4724492.html
Copyright © 2020-2023  润新知