• Python学习之进程


    8.2 进程

    8.2.1 进程的创建

    开启多进程scoketserver:server、client
    进程的开启:python中的多线程,一定是有一个主进程,由主进程创建几个子进程,

    Linux与Windows

    相同点:都是由主进程创建子进程,主进程和子进程原则上都有相互隔离的独立空间,互不影响
    不同点:Linux子进程空间的初始数据完全是从主进程中copy来的;Windows子进程空间数据也是从主进程copy但与主进程有所不同

    进程的三种状态

    阻塞状态:bolcked 进程等待的某种条件满足之前无法继续执行

    运行状态:running 进程正在占用CPU资源

    就绪状态:ready 进程以获得除处理器之外的所需资源,等待分配处理器资源

    python多进程

    Windows下使用Process模块开启多进程,一定要放在__main__下运行

    第一种方式

    from multiprocessing import Process
    import time
    
    def task(name):       
        print(f"{name} is runing ")
        time.sleep(3)
        print(f"{name} is over ")
    
    
    if __name__ == '__main__':   # windows环境下,开启多进程一定放在这个下面
        p = Process(target=task,args=('盖伦',))   # args 一定是一个元组的形式.
        p.start()  # 通知操作系统,你给我在内存中开辟一个空间,将p这个进程放进去,然后让cpu执行,中间需要一定的时间开辟空间
        time.sleep(1)
    
        print('hello')
    

    第二种方法

    from multiprocessing import Process
    import time
    
    class MyProcess(Process):
    
        def __init__(self,name):
            super().__init__()   # 必须要继承父类的__init__
            self.name = name
    
        def run(self):     # 必须定义run名字.
            print(f"{self.name} is runing ")
            time.sleep(3)
            print(f"{self.name} is over ")
    
    
    if __name__ == '__main__':    # windows环境下,开启多进程一定放在这个下面
        p = MyProcess('盖伦')
        p.start()
        print('main process')
    

    8.2.2 进的id

    当内存中存在多个进程时,如何识别进程的身份?
    Windows终端中可以使用tasklist查看所有进程pid,使用tasklist | findstr 进程名可以查看单个具体的进程pid.
    python中获取pid的方法:子进程pid--os.getpid();父进程pid--os.getppid()

    import os
    
    print(f'子进程:{os.getpid()}')
    print(f'父进程:{os.getppid()}')
    

    8.2.3 进程之间的数据隔离

    原则上,个进程之间的数据是隔离的,因为创建子进程之后,会复制一份父进程的数据给子进程,下面进行验证:

    from multiprocessing import Process
    import time
    import os
    
    x = 1000
    
    def f():
        global x
        x = 2
        print(f"子进程:{os.getpid()}")
    
    if __name__ == '__main__':
        p = Process(target=f)
        p.start()
        time.sleep(2)   # 让子进程先执行
        print(x)        # 输出 x = 1000,是数据隔离的
        print(f"父进程:{os.getpid()}")
        
        # 注意:可以使用id(x)产看x在内存中的位置-5到255的 id(x)值相等,其他的都不相等
    

    8.2.4 join**

    主进程等待子进程结束之后再往下执行

    用法:子进程.join()

    两个实例感受一下

    from multiprocessing import Process
    import time
    
    def f(name,x):
        print(f"{name} is runing")
        time.sleep(x)
        print(f"{name} is finishing")
    
    if __name__ == '__main__':
        p1 = Process(target=f,args=('gailun',2))
        p2 = Process(target=f, args=('zhaoxin', 1))
        p3 = Process(target=f, args=('jiawen', 3))
        start_time = time.time()
        p1.start()
        p2.start()
        p3.start()
    
        p1.join()
        p2.join()
        p3.join()
    
        print(f"主进程运行时间{time.time()-start_time}")
        # 最后输出在3.多秒
    
    from multiprocessing import Process
    import time
    
    def f(name,x):
        print(f"{name} is runing")
        time.sleep(x)
        print(f"{name} is finishing")
    
    if __name__ == '__main__':
        p1 = Process(target=f,args=('gailun',2))
        p2 = Process(target=f, args=('zhaoxin', 1))
        p3 = Process(target=f, args=('jiawen', 3))
        start_time = time.time()
        
        p1.start()
        p1.join()
        
        p2.start()
        p2.join()
        
        p3.start()
        p3.join()
        
        print(f"主进程运行时间{time.time()-start_time}")
        # 输出在6.多秒
    

    8.2.5 进程对象的其他属性**

    terminate() 结束子进程与start一样只是告诉系统要终止这个进程;内存中不管是终止或是开启子进程,都是耗费时间的,命名执行后系统不一定会立马运行
    is_alive() 判断子进程是否存活

    8.2.6 僵尸进程与孤儿进程**

    只有Linux(Mac)环境下才强调的两个概念,Windows下没有

    僵尸进程

    ​ 一般来说,主进程是子进程的发起者,父子进程的运行是异步的,主进程往往会调用wait或者waitpid获取子进程的状态信息;如果子进程结束了而父进程没有获取子进程的状态信息,那么子进程的进程描述就会一直保留在系统中,这时子进程就成为僵尸进程。

    ​ 子进程没有可执行代码后将变成僵尸进程,如果父进程一直运行,又没有处理僵尸进程的代码,僵尸进程也将一直存在,消耗资源。僵尸进程无法通过kill命令杀掉,因为僵尸进程是已经停止的,所以使用杀死进程的方法来杀僵尸进程是无效的。僵尸进程不使用CPU或硬盘等系统资源,而只使用极少量的内存用于存储退出状态和资源使用信息。

    【危害】僵尸进程在系统中保存的信息一直不释放的话,会一直占用内存和进程号,如果大量的进程号被占用之后,系统就不能产生新的进程,因为系统分配的进程号时有限的。

    孤儿进程

    如果主进程由于各种原因,提前退出,但是他的子进程还在运行,这时把它所有的子进程称为孤儿进程,一段时间之后,init进程会对孤儿进程进行回收。

    孤儿进程是无害的,init会来回收他

    8.2.7 守护进程

    子进程对父进程进行守护

    语法:位置放在start之前

    进程名.daemon = True
    进程名.start()
    
    • 守护进程会在主进程代码执行结束后就终止
    • 守护进程内不能再开启新的子进程,否则抛出异常AssertionError
    from multiprocessing import Process
    import time
    
    def f(name):
        print(f"{name} is piaoing" )
        time.sleep(3)
        print(f"{name} is piao end")
    
    if __name__ == '__main__':
        p = Process(target=f,args=('gailun',))
        p.daemon = True
        p.start()
        time.sleep(2)
        print('this is main_process')
        # 输出
        gailun is piaoing
        this is main_process
    
    from multiprocessing import Process
    import time
    
    def f1(name):
        print(f"{name} is runing")
        time.sleep(2)
        print(f"{name} is end")
    
    def f(name):
        print(f"{name} is piaoing" )
        p2 = Process(target=f1, args=('zhaoxin',))
        p2.start()
        time.sleep(3)
        print(f"{name} is piao end")
        # 报错:AssertionError: daemonic processes are not allowed to have children
    

    8.3 互斥锁

    ​ 因为进程之间数据是不共享的,但却公用同一个操作系统,某些情况下多个进程会公用某一个资源,例如打印机,下面来进行说明

    ​ 【情况一】

    from multiprocessing import Process
    import time
    import random
    
    def task1():
        print('task1 start print')
        time.sleep(random.randint(1,3))
        print('task1 done')
    
    def task2():
        print('task2 start print')
        time.sleep(random.randint(1, 3))
        print('task2 done')
    
    def task3():
        print('task3 start print')
        time.sleep(random.randint(1, 3))
        print('task3 done')
    
    if __name__ == '__main__':
        p1 = Process(target=task1)
        p2 = Process(target=task2)
        p3 = Process(target=task3)
    
        p1.start()
        p2.start()
        p3.start()
    

    这种情况的虽然有效率,但是打印的顺数是乱的,我们希望的是,一个进程打印完了,下一个进程才能打印

    ​ 【情况二】

    p1.start()
    p1.join()
    p2.start()
    p2.join()
    p3.start()
    p3.join()
    

    这种情况虽然实现了依次打印问题,但是顺序是我们设定好的,没有遵循公平竞争资源的原则

    ​ 【情况三】

    from multiprocessing import Process,Lock
    import time
    import random
    
    def task1(lock):
        print('---task1---') # 验证CPU遇到io是否切换
        lock.acquire()
        print('task1 start print')
        time.sleep(random.randint(1,3))
        print('task1 done')
        lock.release()
    
    def task2(lock):
        print('---task2---') # 验证CPU遇到io是否切换
        lock.acquire()
        print('task2 start print')
        time.sleep(random.randint(1, 3))
        print('task2 done')
        lock.release()
    
    def task3():
        print('---task3---') # 验证CPU遇到io是否切换
        # lock.acquire()
        print('task3 start print')
        time.sleep(random.randint(1, 3))
        print('task3 done')
        # lock.release()
    
    if __name__ == '__main__':
        lock = Lock()
        p1 = Process(target=task1,args=(lock,))  # 以参数的形式传进进程中
        p2 = Process(target=task2,args=(lock,))
        p3 = Process(target=task3)
    
        p1.start()
        p2.start()
        p3.start()
    

    【总结】

    • 使用Lock类的acquire()和release()函数,加锁可以保证多个进程竞争同一个资源时,同一时间只能由一个进程可以进行修改,虽然把多个进程变成串行,但是保证了数据的安全性。
    • 一个acquire必须跟一个release,两个连续的acquire会造成死锁,死锁的常常发生在带锁的进程未解锁之前又生成了带锁的进程
    • 从第三个实列来看,CPU遇到IO时还是切换了进程,只不过碰见带锁的代码时会跳过,去执行不带锁的代码

    8.4 进程间通信

    进程与进程间是互相隔离的。如果要实现两个进程间的通信,可以借助硬盘里的同一文件,但是该方法着实有些效率低,所以我们选择使用队列或者管道,但是管道又因为bug无法保证数据安全性和稳定性等等被诟病,往往选择队列。

    【使用文件模拟抢票】
    # 需求:1.买票之前,先经过查票阶段,查票是并行发生
    # 2.买票,从服务端获取剩余票数,买票,票数减一,中间有网络延迟
    # 数据隔离,只是内存层面的隔离,不代表硬盘上的数据也隔离
    
    from multiprocessing import Process,Lock
    import time
    import random
    import os
    import json
    
    
    def serch():
        with open('db.json',mode='r',encoding='utf-8') as f1 :
            dic = json.load(f1)
        print(f'剩余票数:{dic["count"]}')
    
    def get():
        with open('db.json',mode='r',encoding='utf-8') as f1:
            dic = json.load(f1)
    
        time.sleep(random.random())  # 模拟网络延迟
        if dic["count"] > 0 :
            dic["count"] -= 1
            with open('db.json', mode='w', encoding='utf-8') as f2:
                json.dump(dic,f2)
            print(f"{os.getpid()}购票成功")
        else:
            print('该班列车票已售完')
    
    def task(l):
        serch()
        l.acquire()
        get()
        l.release()
    
    if __name__ == '__main__':
        with open('db.json', mode='w', encoding='utf-8') as f:
            json.dump({'count':3},f)
    
        lock = Lock()
        for i in range(5):
            p = Process(target=task,args=(lock,))
            p.start()
    

    8.4.1 队列Queue

    队列是存在于内存中的容器

    队列的特点:先进先出(FIFO)原则

    【常用方法】
    • maxsize() q = Queue(3) 数据量不易过大.精简的重要的数据
    • .put(对象) -- 往队列中插入数据,其中有两个可选参数blocked和timeout。blocked默认为True,如果put的对象数量超过maxsize,则会阻塞进程,blocked默认为False时,直接报Queue.Full异常;timeout参数设定之后,是在timeout时间之后如果队列还无法插入数据载报Queue.Full异常
    • .get(对象) -- 从队列中拿取一个元素,get函数也有两个参数blocked和timeout。blocked默认为True,如果队列为空时,继续get就会阻塞进程,这是如果尤其的进程王该队列中添加了数据,阻塞的进程还是可以取到数据,blocked为false且队列为空时,直接报Queue.Empty异常,timeout参数设定之后,是在timeout时间之后如果队列还无法插入数据载报Queue.Empty异常
    • q.get_nowait():同q.get(False)
    • q.put_nowait():同q.put(False)
    • q.empty():调用此方法的此时此刻q为空则返回True,如果队列中又加入了项目,它不会在意,所以该函数返回的结果是不可靠的
    • q.full():调用此方法的此时此刻q已满则返回True,该结果也是不可靠的,比如在返回True的过程中,队列中的项目被取走
    • q.qsize():返回队列中此时此刻项目的正确数量,结果也不可靠,理由同q.empty()和q.full()一样
    from multiprocessing import Queue
    from multiprocessing import Process
    import os
    
    def task(q):
        try :
            q.put(f"{os.getpid()}",block=False)
        except Exception:
            return
    
    if __name__ == '__main__':
        q = Queue(10)
        for i in range(12):
            p = Process(target=task,args=(q,))
            p.start()
        for i in range(1,11):
            print(f"排名第{i}的用户:{q.get()}")
    

    8.4.2 生产者消费者模型

    【形成的基本条件条件】两个进程 (生产者、消费者) + 缓冲区(队列);
    生产者负责产生数据,消费者负责处理数据,队列缓冲区负责连接两个进程间通信的临界资源

    【问题的核心】生产者在队列满后要暂时停止存入数据,消费者在队列空时,暂时不要取数据

    【用于何处】多用于解决并发问题,处理生产数据与处理数据的进程间的强耦合问题,平衡二者的工作速率,从而提高整体的效率

    # 生产者:生成数据
    # 消费者:处理数据
    # 缓冲区
    # 用于并发
    
    from multiprocessing import Process,Queue
    import random
    import time
    import os
    
    def producer(q):
        for i in range(1,10):
            time.sleep(random.randint(1,2))
            res = f"{i}号武器"
            q.put(res)
            print(f"33[0;32m 邦德锻造了{res} 33[0m")
    
    def consumer(q):
        while 1:
            try:  # 当生产者不再生产,队列为空时要停止消费者继续取值
                time.sleep(random.randint(1,2))
                ret = q.get(timeout=4)
                print(f"33[0;33m 士兵拿走了{ret} 33[0m")
            except Exception:
                return
    
    if __name__ == '__main__':
        q = Queue()
        p = Process(target=producer,args=(q,))
        c = Process(target=consumer,args=(q,))
    
        p.start()
        c.start()
    

    对于临界,除了以上try的处理方式外,还可以在生产者进程内put一个停止取值的信号,当消费者在队列中取到该值时,就会停止继续取值;还可以在主程序下,配合join向队列中put 停止信号,这种方式相对low一些,因为有多少个生产者就要写多少个停止信号

    仅供参考,欢迎指正
  • 相关阅读:
    类风湿性关节炎患者肿瘤坏死因子拮抗剂应用和心血管疾病的风险:系统文献复习
    合用DMARDs对持续抗TNF治疗的类风湿关节炎患者的影响:来自英国风湿病生物制剂注册系统的结果
    依那西普治疗幼年型特发性关节炎患者的疗程和停药原因
    TNF治疗早期类风湿关节炎患者严重感染和恶性肿瘤的风险: 随机对照研究的荟萃分析
    生物制剂对银屑病关节炎中轴表现的疗效:对依那西普治疗的一组患者为期12个月的观察性研究
    中国银屑病患者中银屑病关节炎的患病率和特征
    TNF抑制剂在10例新近起病的难治性反应性关节炎患者中的安全性与疗效
    中信国健临床通讯2011年1月第2期目录
    甲氨蝶呤治疗早期未用过DMARD的类风湿性关节炎的疗效预测:来自SWEFOT试验开放期初期的结果
    TopCoder入门教程 sqybi完善版[转载]
  • 原文地址:https://www.cnblogs.com/jjzz1234/p/11240829.html
Copyright © 2020-2023  润新知