• 手写数字识别实现


    本文主要实现手写数字识别,利用多类逻辑回归与神经网络两种方法实现

    Multi-class Classification

    数据源
    There are 5000 training examples in ex3data1.mat, where each training example is a 20 pixel by 20 pixel grayscale image of the digit. Each pixel is represented by a floating point number indicating the grayscale intensity at that location. The 20 by 20 grid of pixels is “unrolled” into a 400-dimensional vector. Each of these training examples becomes a single row in our data matrix X. This gives us a 5000 by 400 matrix X where every row is a training example for a handwritten digit image.

    The second part of the training set is a 5000-dimensional vector y that contains labels for the training set. To make things more compatible with Octave/MATLAB indexing, where there is no zero index, we have mapped the digit zero to the value ten. Therefore, a “0” digit is labeled as “10”, while the digits “1” to “9” are labeled as “1” to “9” in their natural order.

    数据可视化
    通过displaydata函数可以察看数据

    function [h, display_array] = displayData(X, example_width)
    %DISPLAYDATA Display 2D data in a nice grid
    %   [h, display_array] = DISPLAYDATA(X, example_width) displays 2D data
    %   stored in X in a nice grid. It returns the figure handle h and the 
    %   displayed array if requested.
    
    % Set example_width automatically if not passed in
    if ~exist('example_width', 'var') || isempty(example_width) 
        example_width = round(sqrt(size(X, 2)));
    end
    
    % Gray Image
    colormap(gray);
    
    % Compute rows, cols
    [m n] = size(X);
    example_height = (n / example_width);
    
    % Compute number of items to display
    display_rows = floor(sqrt(m));
    display_cols = ceil(m / display_rows);
    
    % Between images padding
    pad = 1;
    
    % Setup blank display
    display_array = - ones(pad + display_rows * (example_height + pad), ...
                           pad + display_cols * (example_width + pad));
    
    % Copy each example into a patch on the display array
    curr_ex = 1;
    for j = 1:display_rows
        for i = 1:display_cols
            if curr_ex > m, 
                break; 
            end
            % Copy the patch
    
            % Get the max value of the patch
            max_val = max(abs(X(curr_ex, :)));
            display_array(pad + (j - 1) * (example_height + pad) + (1:example_height), ...
                          pad + (i - 1) * (example_width + pad) + (1:example_width)) = ...
                            reshape(X(curr_ex, :), example_height, example_width) / max_val;
            curr_ex = curr_ex + 1;
        end
        if curr_ex > m, 
            break; 
        end
    end
    
    % Display Image
    h = imagesc(display_array, [-1 1]);
    
    % Do not show axis
    axis image off
    
    drawnow;
    
    end

    向量化逻辑回归

    由于数据较多,使用向量化可以使训练更加高效,提高速度。

    代价函数的向量化
    代价函数为

    Let us define X and θ as

    gradient向量化


    小技巧

    Debugging Tip: Vectorizing code can sometimes be tricky. One com- mon strategy for debugging is to print out the sizes of the matrices you are working with using the size function. For example, given a data ma- trix X of size 100 × 20 (100 examples, 20 features) and θ, a vector with dimensions 20×1, you can observe that Xθ is a valid multiplication oper- ation, while θX is not. Furthermore, if you have a non-vectorized version of your code, you can compare the output of your vectorized code and non-vectorized code to make sure that they produce the same outputs.

    综上,可以写出lrCostFunction

    function [J, grad] = lrCostFunction(theta, X, y, lambda)
    m = length(y); % number of training examples
    
    % You need to return the following variables correctly 
    J = 0;
    grad = zeros(size(theta));
    temp=[0;theta(2:end)];    % 先把theta(1)拿掉,不参与正则化
    J= -1 * sum( y .* log( sigmoid(X*theta) ) + (1 - y ) .* log( (1 - sigmoid(X*theta)) ) ) / m  + lambda/(2*m) * temp' * temp ;
    grad = ( X' * (sigmoid(X*theta) - y ) )/ m + lambda/m * temp ;
    
    grad = grad(:);
    
    end

    一对多分类
    在这个问题中,需要分成10份

    小技巧

    Octave/MATLAB Tip: Logical arrays in Octave/MATLAB are arrays which contain binary (0 or 1) elements. In Octave/MATLAB, evaluating the expression a == b for a vector a (of size m×1) and scalar b will return a vector of the same size as a with ones at positions where the elements of a are equal to b and zeroes where they are different. To see how this works for yourself, try the following code in Octave/MATLAB:
       a = 1:10; % Create a and b
       b = 3;
       a == b    % You should try different values of b here

    由上可得oneVsAll function

    function [all_theta] = oneVsAll(X, y, num_labels, lambda)
    m = size(X, 1);
    n = size(X, 2);
    X = [ones(m, 1) X];
    
    options = optimset('GradObj', 'on', 'MaxIter', 50);
    
    initial_theta = zeros(n + 1, 1);
    
    for c = 1:num_labels
    
    all_theta(c,:) = fmincg (@(t)(lrCostFunction(t, X, (y == c), lambda)), ...
                initial_theta, options);
    end
    
    end

    One-vs-all Prediction
    根据上面得到了训练后的θ ,根据训练的结果,得到各个分类的可能性,取最大的一个,即是结果

    function p = predictOneVsAll(all_theta, X)
    [a,p] = max(sigmoid( X * all_theta'),[],2) ;    % 返回每行最大值的索引位置,也就是预测的数字
    end
    pred = predictOneVsAll(all_theta, X);
    
    fprintf('
    Training Set Accuracy: %f
    ', mean(double(pred == y)) * 100);

    可得准确率为95%

    SourceCode:machine-learning-ex3

    神经网络实现

    神经网络实现主要步骤如下:

    • 初始化与导入数据
    • Compute Cost (Feedforward)
    • Implement Regularization
    • 随机初始化参数
    • Implement Backpropagation
    • 梯度检验
    • 训练神经网络
    • 预测

    反向传播算法的具体实现

    function [J grad] = nnCostFunction(nn_params, ...
                                       input_layer_size, ...
                                       hidden_layer_size, ...
                                       num_labels, ...
                                       X, y, lambda)
    
    Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ...
                     hidden_layer_size, (input_layer_size + 1));
    
    Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ...
                     num_labels, (hidden_layer_size + 1));
    
    % Setup some useful variables
    m = size(X, 1);
    
    % You need to return the following variables correctly 
    J = 0;
    Theta1_grad = zeros(size(Theta1));
    Theta2_grad = zeros(size(Theta2));
    
    
    %% 对y进行处理 Y(find(y==3))= [0 0 1 0 0 0 0 0 0 0]; 用于 Feedforward cost function 12   
    Y=[];
    E = eye(num_labels);    % 要满足K可以是任意,则不能写eye(10)!!
    for i=1:num_labels
        Y0 = find(y==i);    % 找到等于y=i的序列号,替换向量
        Y(Y0,:) = repmat(E(i,:),size(Y0,1),1);
    end
    
    %% regularized Feedforward cost function lambda=1
    % 计算前向传输 Add ones to the X data matrix  -jin
    X = [ones(m, 1) X];
    a2 = sigmoid(X * Theta1');   % 第二层激活函数输出
    a2 = [ones(m, 1) a2];        % 第二层加入b
    a3 = sigmoid(a2 * Theta2'); 
    
    temp1 = [zeros(size(Theta1,1),1) Theta1(:,2:end)];   % 先把theta(1)拿掉,不参与正则化
    temp2 = [zeros(size(Theta2,1),1) Theta2(:,2:end)];
    temp1 = sum(temp1 .^2);     % 计算每个参数的平方,再就求和
    temp2 = sum(temp2 .^2);
    
    cost = Y .* log(a3) + (1 - Y ) .* log( (1 - a3));  % cost是m*K(5000*10)的结果矩阵  sum(cost(:))全部求和
    J= -1 / m * sum(cost(:)) + lambda/(2*m) * ( sum(temp1(:))+ sum(temp2(:)) );  
    
    
    %% 计算 Gradient 
    delta_1 = zeros(size(Theta1));
    delta_2 = zeros(size(Theta2));
    
    for t = 1:m
       % step 1
       a_1 = X(t,:)';          
    %        a_1 = [1 ; a_1];
       z_2 = Theta1 * a_1;   
       a_2 = sigmoid(z_2);  
          a_2 = [1 ; a_2];
       z_3 = Theta2 * a_2;
       a_3 = sigmoid(z_3);
       % step 2
       err_3 = zeros(num_labels,1);
       for k = 1:num_labels     
          err_3(k) = a_3(k) - (y(t) == k);
       end
       % step 3
       err_2 = Theta2' * err_3;                % err_2有26行!!!
       err_2 = err_2(2:end) .* sigmoidGradient(z_2);   % 去掉第一个误差值,减少为25. sigmoidGradient(z_2)只有25行!!!
       % step 4
       delta_2 = delta_2 + err_3 * a_2';
       delta_1 = delta_1 + err_2 * a_1';
    end
    
    
    % step 5
    Theta1_temp = [zeros(size(Theta1,1),1) Theta1(:,2:end)];
    Theta2_temp = [zeros(size(Theta2,1),1) Theta2(:,2:end)];
    Theta1_grad = 1 / m * delta_1 + lambda/m * Theta1_temp;
    Theta2_grad = 1 / m * delta_2 + lambda/m * Theta2_temp ;
    
    % Unroll gradients
    grad = [Theta1_grad(:) ; Theta2_grad(:)];
    
    
    end

    训练神经网络代码

    options = optimset('MaxIter', 50);
    
    %  You should also try different values of lambda
    lambda = 1;
    
    % Create "short hand" for the cost function to be minimized
    costFunction = @(p) nnCostFunction(p, ...
                                       input_layer_size, ...
                                       hidden_layer_size, ...
                                       num_labels, X, y, lambda);
    
    % Now, costFunction is a function that takes in only one argument (the
    % neural network parameters)
    [nn_params, cost] = fmincg(costFunction, initial_nn_params, options);

    预测结果代码

    function p = predict(Theta1, Theta2, X)
    %PREDICT Predict the label of an input given a trained neural network
    %   p = PREDICT(Theta1, Theta2, X) outputs the predicted label of X given the
    %   trained weights of a neural network (Theta1, Theta2)
    
    % Useful values
    m = size(X, 1);
    num_labels = size(Theta2, 1);
    
    % You need to return the following variables correctly 
    p = zeros(size(X, 1), 1);
    
    h1 = sigmoid([ones(m, 1) X] * Theta1');
    h2 = sigmoid([ones(m, 1) h1] * Theta2');
    [dummy, p] = max(h2, [], 2);
    
    % =========================================================================
    
    
    end

    准确率大概95%左右,根据随机初始化的参数会有1%左右的误差
    SourceCode:machine-learning-ex4

  • 相关阅读:
    jquery,字符串转json对象,json对象转字符串
    Oracle,跳出游标循环
    oracle常用函数使用大全 Oracle除法(转)
    Oracle 数字操作。数字函数。mod(),trunc(),round(),ceil(),floor的使用
    Oracle 和sqlserver 字符串补齐
    js中数组的splice()方法
    详解JavaScript的splice()方法
    使用GDB命令行调试器调试C/C++程序
    代码为什么需要重构
    Spring事务管理要点总结
  • 原文地址:https://www.cnblogs.com/jjx2013/p/6223560.html
Copyright © 2020-2023  润新知