• ACM Self Number


    In 1949 the Indian mathematician D.R. Kaprekar discovered a class of numbers called self-numbers. For any positive integer n, define d(n) to be n plus the sum of the digits of n. (The d stands for digitadition, a term coined by Kaprekar.) For example, d(75) = 75 + 7 + 5 = 87. Given any positive integer n as a starting point, you can construct the infinite increasing sequence of integers n, d(n), d(d(n)), d(d(d(n))), .... For example, if you start with 33, the next number is 33 + 3 + 3 = 39, the next is 39 + 3 + 9 = 51, the next is 51 + 5 + 1 = 57, and so you generate the sequence 

    33, 39, 51, 57, 69, 84, 96, 111, 114, 120, 123, 129, 141, ... 
    The number n is called a generator of d(n). In the sequence above, 33 is a generator of 39, 39 is a generator of 51, 51 is a generator of 57, and so on. Some numbers have more than one generator: for example, 101 has two generators, 91 and 100. A number with no generators is a self-number. There are thirteen self-numbers less than 100: 1, 3, 5, 7, 9, 20, 31, 42, 53, 64, 75, 86, and 97. 

    Input

    No input for this problem.

    Output

    Write a program to output all positive self-numbers less than 10000 in increasing order, one per line.

    Sample Input

    
    

    Sample Output

    1
    3
    5
    7
    9
    20
    31
    42
    53
    64
     |
     |       <-- a lot more numbers
     |
    9903
    9914
    9925
    9927
    9938
    9949
    9960
    9971
    9982
    9993
    题解:
       基础题。题目不难,只要能够理解题意的话就能够顺利的做出来了.
        
    代码:
     1 /*
     2     Name: Self Number
     3     Copyright: 
     4     Author: 
     5     Date: 11/08/17 04:23
     6     Description: 
     7 */
     8 #include<stdio.h>
     9 #include<iostream>
    10 #include<cstring>
    11 #include<algorithm>
    12 using namespace std;
    13 const int NUM = 10000;
    14 int record[NUM];
    15 int judge(int i)
    16 {
    17     int temp = i;
    18     while(i)
    19     {
    20         temp += i%10;
    21         i /= 10;
    22     }
    23     return temp;   /*返回非self number*/
    24 }
    25 
    26 int main()
    27 {
    28     memset(record,0,sizeof(record));  /*数组初始化,是一个好习惯*/ 
    29     for(int i = 1; i < NUM;i++)
    30     {
    31         int  temp  = judge(i);
    32         if(temp < NUM )            
    33             record[temp] = 1;    /*将不是self number的整数标记为1*/        
    34     }
    35     bool flag = false;
    36     for(int i = 1; i < NUM;i++) 
    37     {
    38         
    39         if(record[i] == 0 )/*注意输出格式 最后一个不空行*/
    40         {
    41             if(flag)
    42                 cout<<endl;
    43             cout<<i;
    44             flag = true;
    45         }
    46                         
    47     }
    48 return 0;
    49 }
  • 相关阅读:
    windows下用Python把pdf文件转化为图片(png格式)
    SQL优化实战:外层查询条件放到内层查询中(predicate push down)
    SQL优化实战:临时表+分批提交+按日结存
    SQL优化:重新编译存储过程和表
    论坛中的问题:47 数据库的事务是100%的吗?
    代理模式
    建造者模式
    工厂模式
    面向对向设计
    单例设计模式
  • 原文地址:https://www.cnblogs.com/jj81/p/7196587.html
Copyright © 2020-2023  润新知