• 数据采集框架Gobblin简介


    问题导读:
    Gobblin的架构设计是怎样的?
    Gobblin拥有哪些组建,如何实现可扩展?
    Gobblin采集执行流程的过程?

    前面我们介绍Gobblin是用来整合各种数据源的通用型ETL框架,在某种意义上,各种数据都可以在这里“一站式”的解决ETL整个过程,专为大数据采集而生,易于操作和监控,提供流式抽取支持。

    号称整合各种数据源“一站式”解决ETL整个过程的架构到底是怎样的呢?没图说个X。

    Gobblin架构图

    图片描述

    从Gobblin的架构图来看,Gobblin的功能真的是非常的全。底层支持三种部署方式,分别是standalone,mapreduce,mapreduce on yarn。可以方便快捷的与Hadoop进行集成,上层有运行时任务调度和状态管理层,可以与Oozie,Azkaban进行整合,同时也支持使用Quartz来调度(standalone模式默认使用Quartz进行调度)。对于失败的任务还拥有多种级别的重试机制,可以充分满足我们的需求。再上层呢就是由6大组件组成的执行单元了。这6大组件的设计也正是Gobblin高度可扩展的原因。

    Gobblin组件

    Gobblin提供了6个不同的组件接口,因此易于扩展并进行定制化开发。分别是:

    • source
    • extractor
    • convertor
    • quality checker
    • writer
    • publisher

    Source主要负责将源数据整合到一系列workunits中,并指出对应的extractor是什么。这有点类似于Hadoop的InputFormat。

    Extractor则通过workunit指定数据源的信息,例如kafka,指出topic中每个partition的起始offset,用于本次抽取使用。Gobblin使用了watermark的概念,记录每次抽取的数据的起始位置信息。

    Converter顾名思义是转换器的意思,即对抽取的数据进行一些过滤、转换操作,例如将byte arrays 或者JSON格式的数据转换为需要输出的格式。转换操作也可以将一条数据映射成0条或多条数据(类似于flatmap操作)。

    Quality Checker即质量检测器,有2中类型的checker:record-level和task-level的策略。通过手动策略或可选的策略,将被check的数据输出到外部文件或者给出warning。

    Writer就是把导出的数据写出,但是这里并不是直接写出到output file,而是写到一个缓冲路径( staging directory)中。当所有的数据被写完后,才写到输出路径以便被publisher发布。Sink的路径可以包括HDFS或者kafka或者S3中,而格式可以是Avro,Parquet,或者CSV格式。同时Writer也可是根据时间戳,将输出的文件输出到按照“小时”或者“天”命名的目录中。

    Publisher就是根据writer写出的路径,将数据输出到最终的路径。同时其提供2种提交机制:完全提交和部分提交;如果是完全提交,则需要等到task成功后才pub,如果是部分提交模式,则当task失败时,有部分在staging directory的数据已经被pub到输出路径了。

    Gobblin执行流程

    图片描述

    Job被创建后,Runtime就根据Job的部署方式进行执行。Runtime负责job/task的定时执行,状态管理,错误处理以及失败重试,监控和报告等工作。Gobblin存在分支的概念,从数据源获取的数据由不同的分支进行处理。每个分支都可以有自己的Converter,Quality Checker,Writer和Publisher。因此各个分支可以按不同的结构发布到不同的目标地址。单个分支任务失败不会影响其他分支。 同时每一次Job的执行都会将结果持久化到文件( SequenceFiles)中,以便下一次执行时可以读到上次执行的位置信息(例如offset),本次执行可以从上次offset开始执行本次Job。状态的存储会被定期清理,以免出现存储无限增长的情况。

    Kafka to HDFS 示例

    Gobblin的官方论文上给了一个Kafka数据抽取到HDFS的示例,通过Job运行在Yarn上,Gobblin可以达到运行一个long-running,流处理的模式。分为如下几步:

    Source:每个partition中起始offset都通过Source生成到workunit中;同时,从state中获取上一次抽取结尾的offset信息,以便判断本次Job执行的起始offset。

    Extractor:Extractor会逐个抽取partition的数据,抽取完成一个后,会将末尾offset信息存到状态存储中。

    Converter:LinkedIn内部的Kafka集群主要存储Avro格式的数据,并对此进行一些过滤和转换。

    Quality Checker:LinkedIn中数据都会包含一个时间戳,以便决定放到哪个“小时”目录和“天”目录。对于没有时间戳的数据,则会根据record-level的策略将这些数据写到外部文件中。

    Writer and Publisher:内部使用基于时间的writer和基于时间的publisher去写并pub数据。

    问:新增数据采集如何处理呢???
    选(kai)择(fa)对应的六大组件,配置采集配置文件即可。so easy~~(下篇详解)

    欢迎关注我:叁金大数据(不稳定持续更新~~~)
    qrcode.jpg

  • 相关阅读:
    LeetCode "Median of Two Sorted Arrays"
    LeetCode "Distinct Subsequences"
    LeetCode "Permutation Sequence"

    LeetCode "Linked List Cycle II"
    LeetCode "Best Time to Buy and Sell Stock III"
    LeetCode "4Sum"
    LeetCode "3Sum closest"
    LeetCode "3Sum"
    LeetCode "Container With Most Water"
  • 原文地址:https://www.cnblogs.com/jixin/p/9643821.html
Copyright © 2020-2023  润新知