递归的特点,可以看出递归可以大大缩短程序的代码,有意识的使用递归,可以用较短的代码解决一些复杂的问题。甚至有些问题非得使用递归解决不可。那么什么时候我们该使用递归呢?
递归算法的基本思想是:把规模大的、较难解决的问题变成规模较小的、易解决的同一问题。规模较小的问题又变成规模更小的问题,并且小到一定程度可以直接得出它的解,从而得到原来问题的解。
一个问题要采用递归方法来解决时,必须符合以下三个条件:
1.解决问题时,可以把一个问题转化为一个新的问题,而这个新的问题的解决方法仍与原问题的解法相同,只是所处理的对象有所不同,这些被处理的对象之间是有规律的递增或递减;
2.可以通过转化过程是问题得到解决;
3.必定要有一个明确的结束递归的条件,否则递归将会无止境地进行下去,直到耗尽系统资源。也就是说必须要某个终止递归的条件。如求阶乘问题,我们要求n的阶乘(n!),可以把这个问题转化为n*(n-1)!,而要求(n-1)!又可转化为(n-1)*(n-2)!,……,这里面都有一个一个数乘以另一个数阶乘的问题,被处理的对象分别是n,n-1,……,是有规律的递减。但是我们不能让程序无休止的乘下去,必须要给他一个结束条件,该问题恰好有一个结束条件,那就是当n=0时,0!=1。