• 搜索引擎相关


    索引

    正向索引(forward index),反向索引(inverted index)更熟悉的名字是倒排索引。

    正向索引

    在搜索引擎中每个文件都对应一个文件ID,文件内容被表示为一系列关键词的集合。例如“文档1”经过分词,提取了20个关键词,每个关键词都会记录它在文档中的出现次数和出现位置。
    得到正向索引的结构如下:
    “文档1”的ID > 单词1:出现次数,出现位置列表;单词2:出现次数,出现位置列表;…………。
    “文档2”的ID > 单词3:出现次数,出现位置列表;单词4:出现次数,出现位置列表;…………。
    ...

    倒排索引

    把文件ID对应到关键词的映射转换为关键词到文件ID的映射,每个关键词都对应着一系列的文件。
    得到倒排索引的结构如下:
    “关键词1”:“文档1”的ID,“文档2”的ID,…………。
    “关键词2”:“文档3”的ID,“文档4”的ID,…………。
    ...

    为什么需要倒排索引

    当用户在主页上搜索关键词“华为手机”时,假设只存在正向索引(forward index),那么就需要扫描索引库中的所有文档,找出所有包含关键词“华为手机”的文档,再根据打分模型进行打分,排出名次后呈现给用户。
    因为互联网上收录在搜索引擎中的文档的数目是个天文数字,这样的索引结构根本无法满足实时返回排名结果的要求。所以,搜索引擎会将正向索引重新构建为倒排索引

    术语

    文档

    一般搜索引擎的处理对象是互联网网页,而文档这个概念要更宽泛些,代表以文本形式存在的存储对象,相比网页来说,涵盖更多种形式,比如Word,PDF,html,XML等不同格式的文件都可以称之为文档。再比如一封邮件,一条短信,一条微博也可以称之为文档。在本书后续内容,很多情况下会使用文档来表征文本信息。

    文档集合

    由若干文档构成的集合称之为文档集合。比如海量的互联网网页或者说大量的电子邮件都是文档集合的具体例子。

    文档编号

    在搜索引擎内部,会将文档集合内每个文档赋予一个唯一的内部编号,以此编号来作为这个文档的唯一标识,这样方便内部处理,每个文档的内部编号即称之为“文档编号”,后文有时会用DocID来便捷地代表文档编号。

    单词编号

    与文档编号类似,搜索引擎内部以唯一的编号来表征某个单词,单词编号可以作为某个单词的唯一表征。

    倒排索引

    倒排索引是实现“单词-文档矩阵”的一种具体存储形式,通过倒排索引,可以根据单词快速获取包含这个单词的文档列表。倒排索引主要由两个部分组成:“单词词典”和“倒排文件”。

    单词词典

    搜索引擎的通常索引单位是单词,单词词典是由文档集合中出现过的所有单词构成的字符串集合,单词词典内每条索引项记载单词本身的一些信息以及指向“倒排列表”的指针。

    倒排列表

    倒排列表记载了出现过某个单词的所有文档的文档列表及单词在该文档中出现的位置信息,每条记录称为一个倒排项(Posting)。根据倒排列表,即可获知哪些文档包含某个单词。

    倒排文件

    所有单词的倒排列表往往顺序地存储在磁盘的某个文件里,这个文件即被称之为倒排文件,倒排文件是存储倒排索引的物理文件。

    倒排索引简单实例

    倒排索引从逻辑结构和基本思路上来讲非常简单。
    假设文档集合包含五个文档,每个文档内容如图所示,在图中最左端一栏是每个文档对应的文档编号。我们的任务就是对这个文档集合建立倒排索引。

    中文和英文等语言不同,单词之间没有明确分隔符号,所以首先要用分词系统将文档自动切分成单词序列。
    这样每个文档就转换为由单词序列构成的数据流,为了系统后续处理方便,需要对每个不同的单词赋予唯一的单词编号,
    同时记录下哪些文档包含这个单词,这个单词在某个文档中的出现次数,每个单词对应的“文档频率信息,单词在某个文档出现的位置信息
    之所以要记录这个信息,是因为在搜索结果排序时,是很重要的一个计算因子

    有了这个索引系统,搜索引擎可以很方便地响应用户的查询,比如用户输入查询词“Facebook”,搜索系统查找倒排索引,从中可以读出包含这个单词的文档,这些文档就是提供给用户的搜索结果,而利用单词频率信息、文档频率信息即可以对这些候选搜索结果进行排序,计算文档和查询的相似性,按照相似性得分由高到低排序输出

    单词词典

    单词词典是倒排索引中非常重要的组成部分,它用来维护文档集合中出现过的所有单词的相关信息,同时用来记载某个单词对应的倒排列表在倒排文件中的位置信息。在支持搜索时,根据用户的查询词,去单词词典里查询,就能够获得相应的倒排列表,并以此作为后续排序的基础。
    对于一个规模很大的文档集合来说,可能包含几十万甚至上百万的不同单词,能否快速定位某个单词,这直接影响搜索时的响应速度,所以需要高效的数据结构来对单词词典进行构建和查找,常用的数据结构包括哈希加链表结构和树形词典结构。

    哈希加链表

    每个哈希表项保存一个指针,指针指向冲突链表,在冲突链表里,相同哈希值的单词形成链表结构。之所以会有冲突链表,是因为两个不同单词获得相同的哈希值
    在建立索引的过程中,词典结构也会相应地被构建出来。比如在解析一个新文档的时候,对于某个在文档中出现的单词T,首先利用哈希函数获得其哈希值,之后根据哈希值对应的哈希表项读取其中保存的指针,就找到了对应的冲突链表。如果冲突链表里已经存在这个单词,说明单词在之前解析的文档里已经出现过。如果在冲突链表里没有发现这个单词,说明该单词是首次碰到,则将其加入冲突链表里。通过这种方式,当文档集合内所有文档解析完毕时,相应的词典结构也就建立起来了。
    在响应用户查询请求时,其过程与建立词典类似,不同点在于即使词典里没出现过某个单词,也不会添加到词典内。以图7为例,假设用户输入的查询请求为单词3,对这个单词进行哈希,定位到哈希表内的2号槽,从其保留的指针可以获得冲突链表,依次将单词3和冲突链表内的单词比较,发现单词3在冲突链表内,于是找到这个单词,之后可以读出这个单词对应的倒排列表来进行后续的工作,如果没有找到这个单词,说明文档集合内没有任何文档包含单词,则搜索结果为空。

    树形结构

    列描述

    单词ID:记录每个单词的单词编号;
    单词:对应的单词;
    文档频率:代表文档集合中有多少个文档包含某个单词
    倒排列表:包含单词ID及其他必要信息
    DocId:单词出现的文档id
    TF:单词在某个文档中出现的次数
    POS:单词在文档中出现的位置

  • 相关阅读:
    一站式示例代码库登陆微软中国首页
    一站式示例代码库 中文版 2010年10月更新
    微软一站式示例代码库20101010 新增代码示例简介
    一站式示例代码库 中文版 2010年9月更新
    微软全新示例代码请求服务正式上线
    Merge Sort 归并排序
    递归的Fibonacci在数羊
    VS2010 常用快捷键总结
    【总结——HTTP协议】
    在项目中使用log4net记录日志
  • 原文地址:https://www.cnblogs.com/jis121/p/11104202.html
Copyright © 2020-2023  润新知