• 1000! mod 10^250


    1000! mod 10^250 
    ===============
    the answer is 2
    ================
    Hi I'm trying to solve the above problem that was asked recently. Couldn't mod it because it was closed. 

    So far I've found the 1000! has 249 zeros 
    because there are 
    200 multiples of 5 that will generate 200 zeros 
    40 multiples of 25 that will generate an Additional 40 zeros 
    8 multiples of 125 that will generate an Additional 8 zeros 
    1 multiple of 625 that will generate an addition zero. 

    So what I'm trying to find is what the last significant digit is. 
    Now. 
    1x2x3x4x1x6x7x8x9 
    generates a value that ends in 6 
    The same will apply to every other sequence ending in 
    1,2,3,4,6,7,8,9 
    of which there are 100 
    6^100 conveniently also ends in 6 as does any power of 6. 

    Multiplying of 10, 20,30,40, 60,70,80,90 will does the same thing for every set of 100 
    as will 
    the multiplying of 100, 200,300,400, 600,700,800,900 will does the same thing as well. 

    However, I can't figure out how to deal with the multiples of 5 now that are not multiples of 10 and the multipliers that are multiples of 50 that aren't 100s 
    and the 500. 

    Any suggestions ?
    Update: Actually, I just realised that I can bind every 5 to a 2; every 50 to a 20, and the 500 to a 200 
    Leaving me with 111 sets of (1.3.4.6.7.8.9) 
    which ends in an 8 
    so 8^111 ends in a 2; because powers of 8 mod 10 repeat in sets of 4. 

    So I'm guessing that the final answer is 2 
    Anybody know if this would be correct ? 
    Thanks.
    Update 2: Thanks for the "can't bind the 5s" Forgot that that's kind of why they were left out to begin with. 
    The 111 was from 
    100 sequences of 1,2,3,...,9; 10 sequences of 10,20,30...,90; 1 sequence of 100,200,300... 
    thanks for the Wolfram link - that's awesome.
    Update 3: Primes seem to have been the way to go. 
    1000! can be written as 
    2^994.3^498.5^249.7^164.11^98.13^81.17^... etc 
    which can written 
    2^249.5^249.2^745.3^498. etc 

    1000! can then also be thought of as Product(all non multiples of 5).5^160.Product(allnon multiples of 5 to 200).(5^2)^(40-8).Product(all non multiples of 5 to 40).(5^3)^(8-1)(Pupto8).(5^4)^1(1) 
    which is 5^249.(product sequences with all least significant digits 1,2,3,4,6,7,8,9).product_sequence(1.2.3.... 
    which is 5^249(sequence ending in 6)(sequence ending in 4) 
    which is 5^249(sequence ending in 4) 

    I already know that the (sequence ending in 4) has 2^249.2^745 as a factor. 
    Taking out 2^249 from that (sequence ending in 4) will remove the issue with the 5s 
    multiples of 2 end in the sequence 2,4,8,6, 2,4,8,6 etc. 
    stepping back 249 times along this sequence starting at 4, we arrive at 2 
    So I think that is a reasonable method and answer ? 
    Thanks for all the help.

    ========================================================================================
     Best Answer:  Yes, it ends in 249 0's and the last significant digits are 10970027753472. I have a program that does the calculation. Results are in the image below, or athttp://i276.photobucket.com/albums/kk2/f... if YahooAnswers maintenance is preventing you from seeing it. 


    I'm not quite sure of the details of what you did. You can't ignore the multiples of 5 just because they get matched up with a 2. E.g., take 30 and 40. Match up the 5's and you are left with factors of 6 and 8, which are different, and you have to account for those quotients after the 5's are out. You are looking at sets of 1x3x4x6x7x8x9 but when you take the 2 out to bind to a 5, what's left? 32x35 = 1120. 42*45 = 1890. So in one case you still have a 2 to deal with, in the other it's a 9. 

    1*2*3*4*6*7*8*9*(5*10) = 72,576 x 50 = something ending in 6 x 50 = 3628800. Last s.d. is an 8. 
    The product from 11 to 20 = something ending in 6 x (15x20) = something ending in 6 x 300. Last s.d. is again an 8 
    But the product from, say, 31 to 40 = something ending in 6 x (35*40) = 6 x 1400 and it ends in a 4, not an 8. 

    So you've matched up all the 5's, but you need to be concerned about what's left when you do that. I'm not quite sure if you've done that. 2 is the right answer, but I'm not sure that it's because 8^111 ends in 2. Maybe it is, but I don't see where you got 111. Is that from factoring out the 5's somehow? 

    I think you have either figured out the right answer, or are on the right track. It looks like you may have a little more work to do to solve this analytically. 

    Here's some add'l info, a table of the last 3 s.d.'s of n! 

    100 864 
    200 472 
    300 496 
    400 008 
    500 864 
    600 496 
    700 384 
    800 496 
    900 432 
    1000 472 

    You can see how irregular it is. It's easy to count the factors of 5, but not so easy to determine that last digit of what you are left with after you factor them out. 

    Another approach is to count all the prime factors of 1000!, toss out the 5's and 249 of the 2's, find p^e mod 1000, and then take the cumulative product mod 1000. Once again you get 472 as the last 3 s.d.'s. You get: 

    P e p^e mod 1000 *** prod mod 1000 
    2 745 832 832 
    3 498 889 648 
    5 0 1 648 
    7 164 401 848 
    11 98 281 288 
    13 81 613 544 
    17 61 617 648 
    19 54 321 8 
    23 44 241 928 
    29 35 549 472 
    31 33 191 152 
    37 27 533 16 
    41 24 561 976 
    43 23 507 832 
    47 21 847 704 
    53 18 689 56 
    59 16 41 296 
    61 16 961 456 
    67 14 329 24 
    71 14 881 144 
    73 13 33 752 
    79 12 441 632 
    83 12 161 752 
    89 11 489 728 
    97 10 49 672 
    101 9 901 472 
    103 9 583 176 
    107 9 507 232 
    109 9 389 248 
    113 8 321 608 
    127 7 503 824 
    131 7 811 264 
    137 7 433 312 
    139 7 379 248 
    149 6 601 48 
    151 6 401 248 
    157 6 449 352 
    163 6 9 168 
    167 5 607 976 
    173 5 93 768 
    179 5 899 432 
    181 5 901 232 
    191 5 951 632 
    193 5 193 976 
    197 5 757 832 
    199 5 999 168 
    211 4 441 88 
    223 4 441 808 
    227 4 841 528 
    229 4 481 968 
    233 4 521 328 
    239 4 641 248 
    241 4 561 128 
    251 3 251 128 
    257 3 593 904 
    263 3 447 88 
    269 3 109 592 
    271 3 511 512 
    277 3 933 696 
    281 3 41 536 
    283 3 187 232 
    293 3 757 624 
    307 3 443 432 
    311 3 231 792 
    313 3 297 224 
    317 3 13 912 
    331 3 691 192 
    337 2 569 248 
    347 2 409 432 
    349 2 801 32 
    353 2 609 488 
    359 2 881 928 
    367 2 689 392 
    373 2 129 568 
    379 2 641 88 
    383 2 689 632 
    389 2 321 872 
    397 2 609 48 
    401 2 801 448 
    409 2 281 888 
    419 2 561 168 
    421 2 241 488 
    431 2 761 368 
    433 2 489 952 
    439 2 721 392 
    443 2 249 608 
    449 2 601 408 
    457 2 849 392 
    461 2 521 232 
    463 2 369 608 
    467 2 89 112 
    479 2 441 392 
    487 2 169 248 
    491 2 81 88 
    499 2 1 88 
    503 1 503 264 
    509 1 509 376 
    521 1 521 896 
    523 1 523 608 
    541 1 541 928 
    547 1 547 616 
    557 1 557 112 
    563 1 563 56 
    569 1 569 864 
    571 1 571 344 
    577 1 577 488 
    587 1 587 456 
    593 1 593 408 
    599 1 599 392 
    601 1 601 592 
    607 1 607 344 
    613 1 613 872 
    617 1 617 24 
    619 1 619 856 
    631 1 631 136 
    641 1 641 176 
    643 1 643 168 
    647 1 647 696 
    653 1 653 488 
    659 1 659 592 
    661 1 661 312 
    673 1 673 976 
    677 1 677 752 
    683 1 683 616 
    691 1 691 656 
    701 1 701 856 
    709 1 709 904 
    719 1 719 976 
    727 1 727 552 
    733 1 733 616 
    739 1 739 224 
    743 1 743 432 
    751 1 751 432 
    757 1 757 24 
    761 1 761 264 
    769 1 769 16 
    773 1 773 368 
    787 1 787 616 
    797 1 797 952 
    809 1 809 168 
    811 1 811 248 
    821 1 821 608 
    823 1 823 384 
    827 1 827 568 
    829 1 829 872 
    839 1 839 608 
    853 1 853 624 
    857 1 857 768 
    859 1 859 712 
    863 1 863 456 
    877 1 877 912 
    881 1 881 472 
    883 1 883 776 
    887 1 887 312 
    907 1 907 984 
    911 1 911 424 
    919 1 919 656 
    929 1 929 424 
    937 1 937 288 
    941 1 941 8 
    947 1 947 576 
    953 1 953 928 
    967 1 967 376 
    971 1 971 96 
    977 1 977 792 
    983 1 983 536 
    991 1 991 176 
    997 1 997 472

    Source(s):http://www.wolframalpha.com/input/?i=100... gives you the answer too. Keep asking for "more digits."


  • 相关阅读:
    LINQ标准查询操作符(二)——Join、GroupJoin、GroupBy、Concat、
    LINQ标准查询操作符(一)——select、SelectMany、Where、OrderBy、OrderByDescending、ThenBy、ThenByDescending和Reverse
    LINQ GroupBy
    C# EF使用SqlQuery直接操作SQL查询语句或者存储过程
    mycat工作原理
    Linux系统启动过程详解
    jump堡垒机配置使用
    jumpserver 堡垒机环境搭建(图文详解)
    pip安装
    判断网站响应时间 脚本
  • 原文地址:https://www.cnblogs.com/jins-note/p/9786378.html
Copyright © 2020-2023  润新知