求逆序的个数。首先处理出对n个数它所有排列的逆序的个数。然后,按位枚举,当枚举的数少于当前位,逆序数的个数就是前面确定的数对于后面数的逆序总数+后面k个数的排列的逆序总数。
1Y。
#include<cstdio> #include<cmath> #include<queue> #include<map> #include<string> #include<cstring> #include<iostream> #include<algorithm> using namespace std; const int maxn = 100005; long long a[maxn], b[maxn], X1, X2, Y1, Y2, P, ans; int n; long long inv(long long x, long long m) { if (x == 1) return x; return inv(m % x, m)*(m - m / x) % m; } long long C(int x, int y) { if (x > y) return 0; return (a[y] * b[x]) % P * b[y - x] % P; } long long c(int x, int y) { if (x > y) return 0; if (y >= P) return C(x % P, y % P)*c(x / P, y / P) % P; else return C(x, y); } int main() { while (cin >> X1 >> Y1 >> X2 >> Y2 >> P) { a[0] = b[0] = 1; for (int i = 1; i <= min(X2 + 1, P - 1); i++) { a[i] = (a[i - 1] * i) % P; b[i] = inv(a[i], P); } ans = 0; for (int i = Y1; i <= Y2; i++) { (ans += c(i + 1, X2 + 1) - c(i + 1, X1)) %= P; } (ans += P) %= P; cout << ans << endl; } return 0; }