• [转载]关于螺旋数组的面试题


    问题

    1 按顺时针方向构建一个m * n的螺旋矩阵(或按顺时针方向螺旋访问一个m * n的矩阵):

    2 在不构造螺旋矩阵的情况下,给定坐标ij值求其对应的值f(i, j)

    比如对11 * 7矩阵, f(6, 0) = 27  f(6, 1) = 52 f(6, 3) = 76  f(6, 4) = 63

    构建螺旋矩阵

    对m * n 矩阵,最先访问最外层的m * n的矩形上的元素,接着再访问里面一层的 (m - 2) * (n - 2) 矩形上的元素…… 最后可能会剩下一些元素,组成一个点或一条线(见图1)。

    对第i个矩形(i=0, 1, 2 …),4个顶点的坐标为:

    (i, i) ----------------------------------------- (i, n–1-i)

    |                                                    |

    |                                                    |

    |                                                    |

    (m-1-i, i) ----------------------------------------- (m-1-i, n-1-i)

    要访问该矩形上的所有元素,只须用4个for循环,每个循环访问一个点和一边条边上的元素即可(见图1)。另外,要注意对最终可能剩下的1 * k 或 k * 1矩阵再做个特殊处理。

     

    代码:

    inline void act(int t) { printf("%3d ", t); }

     

    const int small = col < row ? col : row;

    const int count = small / 2;

    for (int i = 0; i < count; ++i) {

        const int C = col - 1 - i;

        const int R = row - 1 - i;

        for (int j = i; j < C; ++j) act(arr[i][j]);

        for (int j = i; j < R; ++j) act(arr[j][C]);

        for (int j = C; j > i; --j) act(arr[R][j]);

        for (int j = R; j > i; --j) act(arr[j][i]);

    }

     

    if (small & 1) {

        const int i = count;

        if (row <= col) for (int j = i; j < col - i; ++j) act(arr[i][j]);

        else for (int j = i; j < row - i; ++j) act(arr[j][i]);

    }

    如果只是构建螺旋矩阵的话,稍微修改可以实现4个for循环独立:

    const int small = col < row ? col : row;

    const int count = small / 2;

    for (int i = 0; i < count; ++i) {

        const int C = col - 1 - i;

        const int R = row - 1 - i;

        const int cc = C - i;

        const int rr = R - i;

        const int s = 2 * i * (row + col - 2 * i) + 1;

        for (int j = i, k = s; j < C; ++j) arr[i][j] = k++;

        for (int j = i, k = s + cc; j < R; ++j) arr[j][C] = k++;

        for (int j = C, k = s + cc + rr; j > i; --j) arr[R][j] = k++;

        for (int j = R, k = s + cc * 2 + rr; j > i; --j) arr[j][i] = k++;

    }

     

    if (small & 1) {

        const int i = count;

        int k = 2 * i * (row + col - 2 * i) + 1;

        if (row <= col) for (int j = i; j < col - i; ++j) arr[i][j] = k++;

        else for (int j = i; j < row - i; ++j) arr[j][i] = k++;

    }

    关于s的初始值取 2 * i * (row + col - 2 * i) + 1请参考下一节。

    由于C++的二维数组是通过一维数组实现的。二维数组的实现一般有下面三种:

    静态分配足够大的数组;

    动态分配一个长为m*n的一维数组;

    动态分配m个长为n的一维数组,并将它们的指针存在一个长为m的一维数组。

    二维数组的不同实现方法,对函数接口有很大影响。

    给定坐标直接求值f(x, y)

    如前面所述,对第i个矩形(i=0, 1, 2 …),4个顶点的坐标为:

    (i, i) ----------------------------------------- (i, n–1-i)

    |                                                    |

    |                                                    |

    |                                                    |

    (m-1-i, i) ----------------------------------------- (m-1-i, n-1-i)

    对给定的坐标(x,y),如果它落在某个这类矩形上,显然其所在的矩形编号为:

    k = min{x, y, m-1-x, n-1-y}

    m*n矩阵删除访问第k个矩形前所访问的所有元素后,可得到(m-2*k)*(n-2*k)矩阵,因此已访问的元素个数为:m*n-(m-2*k)*(n-2*k)=2*k*(m+n-2*k),因而 (k,k)对应的值为:

    T(k) = 2*k*(m+n-2*k)+ 1

    对某个矩形,设点(x, y)到起始点(k,k)的距离d = x-k + y-k = x+y-2*k

    ① 向右和向下都只是横坐标或纵坐标增加1,这两条边上的点满足f(x, y) = T(k) + d

    ② 向左和向下都只是横坐标或纵坐标减少1,这两条边上的点满足f(x, y) = T(k+1) - d

    如果给定坐标的点(x, y),不在任何矩形上,则它在一条线上,仍满足f(x, y) = T(k) + d

    int getv(int row, int col, int max_row, int max_col) // row < max_row, col < max_col

    {

    int level = min(min(row, max_row - 1 - row), min(col, max_col - 1 - col));

    int distance = row + col - level * 2;

    int start_value = 2 * level * (max_row + max_col - 2 * level) + 1;

    if (row == level || col == max_col - 1 - level ||

    (max_col < max_row && level * 2 + 1 == max_col))

       return start_value + distance;

    int next_value = start_value + (max_row + max_col - 4 * level - 2) * 2;

    return next_value - distance;

    }

    特别说明

    上面的讨论都是基于m*n矩阵的,对于特例n*n矩阵,可以做更多的优化。比如构建螺旋矩阵,如果n为奇数,则矩阵可以拆分为几个矩形加上一个点。前面的条件判断可以优化为:

    if (small & 1) act[count][count];

    甚至可以调整4个for循环的遍历元素个数(前面代码,每个for循环遍历n-1-2*i个元素,可以调整为:n-2*i,n-1-2*i, n-1-2*i,n-2-2*i)从而达到省略if判断。

    测试代码

    代码1

     

    //螺旋矩阵,给定坐标直接求值 by flyinghearts

    //www.cnblogs.com/flyinghearts

    #include<iostream>

    #include<algorithm>

    using std::min;

    using std::cout;

     

    /*

    int getv2(int row, int col, int max_row, int max_col) // row < max_row, col < max_col

    {

    int level = min(min(row, max_row - 1 - row), min(col, max_col - 1 - col));

    int distance = row + col - level * 2;

    int start_value = 2 * level * (max_row + max_col - 2 * level) + 1;

    if (row == level || col == max_col - 1 - level) return start_value + distance;

    //++level; int next_value = 2 * level * (max_row + max_col - 2 * level) + 1;

    int next_value = start_value + (max_row + max_col - 4 * level - 2) * 2;

    if (next_value > max_col * max_row) return start_value + distance;

    return next_value - distance;

    }

    */

     

    int getv(int row, int col, int max_row, int max_col) // row < max_row, col < max_col

    {

    int level = min(min(row, max_row - 1 - row), min(col, max_col - 1 - col));

    int distance = row + col - level * 2;

    int start_value = 2 * level * (max_row + max_col - 2 * level) + 1;

    if (row == level || col == max_col - 1 - level || (max_col < max_row && level * 2 + 1 == max_col))

        return start_value + distance;

    //++level; int next_value = 2 * level * (max_row + max_col - 2 * level) + 1;

    int next_value = start_value + (max_row + max_col - 4 * level - 2) * 2;

    return next_value - distance;

    }

     

     

    int main()

    {

     

    int test[][2] = {{5, 5}, {5, 7}, {7, 5}, {4, 4}, {4, 6}, {6, 4}};

    const int sz = sizeof(test) / sizeof(test[0]);

    for (int k = 0; k < sz; ++k) {

        int M = test[k][0];

        int N = test[k][1];  

        for (int i = 0; i < M; ++i) {

          for (int j = 0; j < N; ++j)

            cout.width(4), cout << getv(i, j, M, N) << " ";

         cout << "\n";

        }

        cout << "\n";

    }

    }

    代码2:

    //螺旋矩阵 by flyinghearts#qq.com

    //www.cnblogs.com/flyinghearts

    #include<iostream>

     

     

    int counter = 0;

     

    inline void act(int& t)

    {

    //std::cout.width(3), std::cout << t;

    t = ++::counter;

    }

     

    void act_arr(int *arr, int row, int col, int max_col) //col < max_col

    {

    const int small = col < row ? col : row;

    const int count = small / 2;

    int *p = arr;

    for (int i = 0; i < count; ++i) {

        const int C = col - 1 - 2 * i;

        const int R = row - 1 - 2 * i;

        for (int j = 0; j < C; ++j) act(*p++);

        for (int j = 0; j < R; ++j) act(*p), p += max_col;

        for (int j = 0; j < C; ++j) act(*p--);

        for (int j = 0; j < R; ++j) act(*p), p -= max_col;

        p += max_col + 1;

    }

     

    if (small & 1) {

        const int i = count;

        if (row <= col) for (int j = 0; j < col - 2 * i; ++j) act(*p++);

        else for (int j = 0; j < row - 2 * i; ++j) act(*p), p += max_col;

    }

    }

     

     

    void act_arr(int* arr[], int row, int col)

    {

    const int small = col < row ? col : row;

    const int count = small / 2;

    for (int i = 0; i < count; ++i) {

        const int C = col - 1 - i;

        const int R = row - 1 - i;

        for (int j = i; j < C; ++j) act(arr[i][j]);

        for (int j = i; j < R; ++j) act(arr[j][C]);

        for (int j = C; j > i; --j) act(arr[R][j]);

        for (int j = R; j > i; --j) act(arr[j][i]);

    }

     

    if (small & 1) {

        const int i = count;

        if (row <= col) for (int j = i; j < col - i; ++j) act(arr[i][j]);

        else for (int j = i; j < row - i; ++j) act(arr[j][i]);

    }

    }

     

    void act_arr_2(int* arr[], int row, int col)

    {

    const int small = col < row ? col : row;

    const int count = small / 2;

    for (int i = 0; i < count; ++i) {

        const int C = col - 1 - i;

        const int R = row - 1 - i;

        const int cc = C - i;

        const int rr = R - i;

        const int s = 2 * i * (row + col - 2 * i) + 1;

        for (int j = i, k = s; j < C; ++j) arr[i][j] = k++;

        for (int j = i, k = s + cc; j < R; ++j) arr[j][C] = k++;

        for (int j = C, k = s + cc + rr; j > i; --j) arr[R][j] = k++;

        for (int j = R, k = s + cc * 2 + rr; j > i; --j) arr[j][i] = k++;

    }

     

    if (small & 1) {

        const int i = count;

        int k = 2 * i * (row + col - 2 * i) + 1;

        if (row <= col) for (int j = i; j < col - i; ++j) arr[i][j] = k++;

        else for (int j = i; j < row - i; ++j) arr[j][i] = k++;

    }

    }

     

    void print_arr(int *arr, int row, int col, int max_col) //col < max_col

    {

    for (int i = 0, *q = arr; i < row; ++i, q += max_col) {

        for (int *p = q; p < q + col; ++p)

         std::cout.width(4), std::cout << *p;

        std::cout << "\n";

    }

    std::cout << "\n";

    }

     

    void print_arr(int* a[], int row, int col) //col < max_col

    {

    for (int i = 0; i < row; ++i) {

        for (int j = 0; j < col; ++j)

         std::cout.width(4), std::cout << a[i][j];

        std::cout << "\n";

    } 

    std::cout << "\n";

    }

     

     

    void test_1()

    {

    const int M = 25;

    const int N = 25;

    int a[M][N];

    int test[][2] = {{5, 5}, {5, 7}, {7, 5}, {4, 4}, {4, 6}, {6, 4}};

    const int sz = sizeof(test) / sizeof(test[0]);

    std::cout << "Test 1:\n";

    for (int i = 0; i < sz; ++i) {

        int row = test[i][0];

        int col = test[i][1];

        if (row < 0 || row > M) row = 3;

        if (col < 0 || col > N) col = 3;

        ::counter = 0;

        act_arr(&a[0][0], row, col, N);

        print_arr(&a[0][0], row, col, N);

    }

    }

     

    void test_2()

    {

    int test[][2] = {{5, 5}, {5, 7}, {7, 5}, {4, 4}, {4, 6}, {6, 4}};

    const int sz = sizeof(test) / sizeof(test[0]);

    std::cout << "Test 2:\n";

    for (int i = 0; i < sz; ++i) {

        int row = test[i][0];

        int col = test[i][1];

        int **arr = new int*[row];

        for (int i = 0; i < row; ++i) arr[i] = new int[col];

        ::counter = 0;

        act_arr(arr, row, col);

        print_arr(arr, row, col);

        for (int i = 0; i < row; ++i) delete[] arr[i];

        delete[] arr;

    }

    }

     

     

    int main()

    {

    test_1();

    test_2();

    }

     

  • 相关阅读:
    解决 typedef void * POINTER_64 PVOID64; 问题
    短时间内快速获取随机数的方法
    怎样彻底重装IE
    在InstallShield中手动修改XML Files Changes
    Data, Privacy, & ECommerce ISDPE2010 Call for Papers
    DOS命令输出的重定向
    解决:Error spawning 'cmd.exe'
    wuapi 相关文件下载URL
    使用临界区 CRITICAL_SECTION 实现互斥
    修正 IPMSG 2.51 版本中的一点翻译错误
  • 原文地址:https://www.cnblogs.com/jiayouwyhit/p/3055577.html
Copyright © 2020-2023  润新知