• 数据预处理之标准化


    数据的标准化(Standardization)和归一化(Normalization)有什么区别?

    关于数据的标准化和归一化区别的说法有点乱。总的来说有这么几种分法

    1:不做区分,都意味着标准化。

    2:大部分说法是这样的:归一化是这么一个过程$x’ = frac{x-x_{min}}{x_{max}-x_{min}}$

    而标准化是这么一个过程:  $x’ = frac{x-mu}{delta} mu为数据的均值 delta为方差$

    3:sklearn当中preprocessing中方法是这样进行划分的:这里的标准化包含了$frac{x-x_{min}}{x_{max}-x_{min}}$和$frac{x-mu}{delta}$ 。归一化则代表把一个样本(而不是特征)的数据进行范数归一化。

    我们本篇文章采用第三种分发,而把本文当中所有对数据进行的操作都叫做缩放(scale)。

    为什么要进行数据的缩放

    消除数据的量纲,这个过程叫做无量纲化。

    无量纲化:我们的数据一般都是有单位的,比如身高的单位有m,cm,这个无量纲化并不是说把m变成cm,而是说,无论是m还是cm,最后都会变成1,也就是没有了单位。比如 当前身高的单位为cm,经过这个式子的处理:$x’ = frac{x-x_{最小身高}}{x_{最大身高}-x_{最小身高}}$ 变成了一个没有单位的数字。

    当两个特征的量级差别很大的时候,这样的操作是有意义的,假如你有身高和体重两个个特征。身高的单位是m,它的取值经常是这样的值:1.65,1,70,1.67等,而体重的单都位是kg,它经常取这样的值:53,68,73等,我们可以看到体重的值要远远大于身高的值,它们已经不是一个量级了。进行数据的缩放可以避免我们的结果由取值较大的特征决定。

    加快模型的收敛速度

    image

    在上图当中,右上角表示在没有进行缩放以前模型的收敛情况,左边表示在进行缩放以后模型收敛的情况。在SVM、线性回归还有PCA当中经常用到。

    标准化 Standardization

    数据的标准化Standardization,也叫作(去中心化+方差缩放),通过把一组数据的均值变为0,方差变为1实现数据的缩放。数据的标准化是我们对数据的进行缩放的时候最容易想到的操作,也是最常用到的操作。它也叫z-score方法。

    自己写一个公式来进行标准化:

    def my_scale(data):
        mean = sum(data) / len(data)  #先求均值
        variance = ( sum([ (I-mean) ** 2 for I in data])  ) / len(data)  #再求方差
        normal = [(I - mean) / (variance ) ** 0.5 for I in data]  #按照公式标准化
        return normal

    使用scale方法进行标准化

    from sklearn import preprocessing
    import numpy as np
    X_train = np.array([[ 1., -1.,  2.],
                        [ 2.,  0.,  0.],
                        [ 0.,  1., -1.]])
    
    X_scaled = preprocessing.scale(X_train)
    print(X_scaled)

    输出的结果为:

    [[ 0.         -1.22474487  1.33630621]
     [ 1.22474487  0.         -0.26726124]
     [-1.22474487  1.22474487 -1.06904497]]

    使用StandardScaler方法进行标准化

    StandarScaler方法能够允许我们进行fit,从而保存我们的模型,然后进行transform转换

    from sklearn import preprocessing
    
    scaler = preprocessing.StandardScaler().fit(X_train)
    print(scaler.transform(X_train))

    输出同样的结果。

    将结果缩放到一个区间内

    MaxMinScaler方法

    MaxMinScaler是将数值缩放到[0,1]区间内,使用的公式是$frac{x-x_{min}}{x_{max}-x_{min}}$

    使用这个缩放的情况包括:增强极小方差的值还有保留稀疏样本中的零值。也叫作最大最小标准化,[0,1]标准化。

    import numpy as np
    from sklearn import preprocessing
    
    X_train = np.array([[ 1., -1.,  2.],
                        [ 2.,  0.,  0.],
                        [ 0.,  1., -1.]])
    
    min_max_sacler = preprocessing.MinMaxScaler()
    min_max_sacler.fit(X_train)
    
    print(min_max_sacler.transform(X_train))

    输出的结果为:

    [[0.5        0.         1.        ]
     [1.         0.5        0.33333333]
     [0.         1.         0.        ]]

    MaxAbsScaler方法

    MaxAbsScaler将值缩放到[-1,1]区间内,$frac{x}{max{|x|}}$  也就是将x除以那个最大的绝对值。这种情况适合在均值在0附近的值,或者稀疏矩阵。

    import numpy as np
    from sklearn import preprocessing
    
    X_train = np.array([[ -4., -2.,  2.],
                        [ -5.,  0.,  0.],
                        [ 0.,  1., 6.],
                        [10,   2,  3]])
    
    max_abs_sacler = preprocessing.MaxAbsScaler()
    max_abs_sacler.fit(X_train)
    
    print(max_abs_sacler.transform(X_train))

    输出结果如下:(第一列除以10,第二列除以4,第三列除以6)

    [[-0.4        -1.          0.33333333]
     [-0.5         0.          0.        ]
     [ 0.          0.25        1.        ]
     [ 1.          0.5         0.5       ]]

    特殊数据缩放:

    缩放稀疏数据: 使用MaxAbsScaler可以进行稀疏数据的缩放,

    缩放异常点较多的数据: 使用robust_scale 或者RobustScaler

    非线性转换 -- 分位数转换:

    这里主要介绍QuantileTrasformer,和前面提到的缩放一样,分位数转换的目的也是把特征数据转换到一定的范围内,或者让他们符合一定的分布。分位数转换利用的是数据的分位数信息进行变换。它能够平滑那些异常分布,对于存在异常点的数据也很适合。但是它会破话原来数据的相关性和距离信息。

    preprocessing的QantitleTransformer可以进行分位数转换

    from sklearn.datasets import load_iris
    from sklearn.model_selection import train_test_split
    from sklearn import preprocessing
    import numpy as np
    iris = load_iris()
    X, y = iris.data, iris.target
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
    
    quantile_transformer = preprocessing.QuantileTransformer(random_state=0)
    
    X_train_trans = quantile_transformer.fit_transform(X_train)
    X_test_trans = quantile_transformer.fit_transform(X_test)
    #查看分位数信息,经过转换以后,分位数的信息基本不变
    print(np.percentile(X_train[:, 0], [0, 25, 50, 75, 100]))
    print(np.percentile(X_train_trans[:, 0], [0, 25, 50, 75, 100]))

    输出结果如下:

    [4.3 5.1 5.8 6.5 7.9]
    [9.99999998e-08 2.38738739e-01 5.09009009e-01 7.43243243e-01
     9.99999900e-01]

    至于具体的运算规则:猜测可能涉及到分位数回归的知识,这里就没有继续探索。

     

    归一化  Normalization

    需要说明是,这里的归一化不是对一列的特征进行操作,而是对一行的样本(记录)进行操作。归一化适用于这样的场景:需要使用点积,或者有的模型需要对样本的相似性进行度量。

    preprocessing中的normalize方法提供了这样的操作,这个方法有个参数叫做norm,取值可以为 ‘l1’,’l2’,’max’,取不同的值,使用不同的方式进行归一化。当取值为’l1‘的时候,运用l1范数进行归一化,计算的方法是 $x’ = frac{x}{sum_{i=1}^{n}|x_i|}$  运用l2范数进行归一化的时候,计算方法是这样的:$x’ = frac{x}{sqrt{sum_{i=1}^{n}x_i^2}}$我们来用代码来看一下:

    from sklearn import preprocessing
    
    
    X = [[ 1., -1.,  2.],
         [ 2.,  0.,  0.],
         [ 0.,  1., -1.],
         [ 3.,  4., 5.]]
    
    X1_normalized = preprocessing.normalize(X, norm='l1')
    X2_normalized = preprocessing.normalize(X, norm='l2')
    
    print(X1_normalized)
    print(X2_normalized)

    输出结果如下:

    [[ 0.25       -0.25        0.5       ]
     [ 1.          0.          0.        ]
     [ 0.          0.5        -0.5       ]
     [ 0.25        0.33333333  0.41666667]]
    [[ 0.40824829 -0.40824829  0.81649658]
     [ 1.          0.          0.        ]
     [ 0.          0.70710678 -0.70710678]
     [ 0.42426407  0.56568542  0.70710678]]

    另外preproceing 的Normalizer也提供了标准化的方法,可以进行fit和transform操作。

  • 相关阅读:
    工作中收集的工具类函数库
    前端常用应用网站
    angularJs select ng-selected默认选中遇到的坑
    超好用的input模糊搜索 jq模糊搜索,
    angular,,以及深度拷贝问题;JSON.parse,JSON.stringify灵活运用
    vue-router解析,vue-router原理解析
    共享一个PowerDesigner 16.5
    在与 SQL Server 建立连接时出现与网络相关的或特定于实例的错误。未找到或无法访问服务器。
    C#的Class的几个修饰符
    IntelliTrace调试
  • 原文地址:https://www.cnblogs.com/jiaxin359/p/8580057.html
Copyright © 2020-2023  润新知