• spark streaming消费kafka数据写入hdfs避免文件覆盖方案(java版)


    1.写在前面

    spark streaming+kafka对流式数据处理过程中,往往是spark streaming消费kafka的数据写入hdfs中,再进行hive映射形成数仓,当然也可以利用sparkSQL直接写入hive形成数仓。对于写入hdfs中,如果是普通的rdd则API为saveAsTextFile(),如果是PairRDD则API为saveAsHadoopFile()。当然高版本的spark可能将这两个合二为一。这两种API在spark streaming中如果不自定义的话会导致新写入的hdfs文件覆盖历史写入的hdfs文件,下面来重现这个问题。

    2.saveAsTextFile()写新写入的hdfs文件覆盖历史写入的hdfs文件测试代码

    package com.surfilter.dp.timer.job;
    
    import kafka.message.MessageAndMetadata;
    import kafka.serializer.StringDecoder;
    import org.apache.spark.SparkConf;
    import org.apache.spark.api.java.JavaPairRDD;
    import org.apache.spark.api.java.JavaRDD;
    import org.apache.spark.api.java.JavaSparkContext;
    import org.apache.spark.api.java.function.FlatMapFunction;
    import org.apache.spark.api.java.function.Function;
    import org.apache.spark.api.java.function.PairFlatMapFunction;
    import org.apache.spark.api.java.function.VoidFunction;
    import org.apache.spark.streaming.Seconds;
    import org.apache.spark.streaming.api.java.JavaInputDStream;
    import org.apache.spark.streaming.api.java.JavaStreamingContext;
    import org.apache.spark.streaming.kafka.KafkaUtils;
    
    import java.text.SimpleDateFormat;
    import java.util.*;
    
    public class TestStreaming extends BaseParams {
        public static void main(String args[]) {
            String totalParameterString = null;
            if (null != args && args.length > 0) {
                totalParameterString = args[0];
            }
            if (null != totalParameterString && !"".equals(totalParameterString)) {
                ParameterParse parameterParse = new ParameterParse(totalParameterString);
                SparkConf conf = new SparkConf().setAppName(parameterParse.getSpark_app_name());
                setSparkConf(parameterParse, conf);
                JavaSparkContext sparkContext = new JavaSparkContext(conf);
                JavaStreamingContext streamingContext = new JavaStreamingContext(sparkContext, Seconds.apply(Long.parseLong(parameterParse.getSpark_streaming_duration())));
    
                JavaInputDStream<String> dStream = KafkaUtils.createDirectStream(streamingContext, String.class, String.class,
                        StringDecoder.class, StringDecoder.class, String.class,
                        generatorKafkaParams(parameterParse), generatorTopicOffsets(parameterParse, "test_20200509"),
                        new Function<MessageAndMetadata<String, String>, String>() {
                            private static final long serialVersionUID = 1L;
    
                            @Override
                            public String call(MessageAndMetadata<String, String> msgAndMd) throws Exception {
                                return msgAndMd.message();
                            }
                        });
    
                dStream.foreachRDD(new VoidFunction<JavaRDD<String>>() {
                    @Override
                    public void call(JavaRDD<String> rdd) throws Exception {
                        JavaRDD<String> saveHdfsRdd = rdd.mapPartitions(new FlatMapFunction<Iterator<String>, String>() {
                            @Override
                            public Iterable<String> call(Iterator<String> iterator) throws Exception {
                                List<String> returnList = new ArrayList<>();
                                while (iterator.hasNext()){
                                    String message = iterator.next().toString();
                                    returnList.add(message);
                                }
                                return returnList;
                            }
                        });
    
                        String dt = new SimpleDateFormat("yyyyMMdd").format(new Date());
                        String hour = new SimpleDateFormat("HH").format(new Date());
                        String savePath = "hdfs://gawh220:8020/user/hive/warehouse/rzx_standard.db/meijs_test/dt=" + dt + "/hour=" + hour + "/";
                        saveHdfsRdd.saveAsTextFile(savePath);
                    }
                });
    
                streamingContext.start();
                streamingContext.awaitTermination();
                streamingContext.close();
            }
        }
    }
    

    在yarn上执行spark streaming观察,用命令行的方式往test_20200509的topic手动生产一段测试数据,发现spark streaming立马检测到并执行完成

    之后查看写入的hdfs文件

    发现hdfs文件写入正常,也是有数据的。之后不再继续命令行生产数据,当sprak streaming新的一个批次记录为0的任务开始执行并执行完成

    再观察写入的hdfs文件,发现文件依然有,但是文件的内容为空,这就证明了第一批有数据的被覆盖掉了

    为什么被覆盖?
    spark streaming是按照特定的配置时间去一批批的拉取kafka的数据,在写入的时候也是按照分区的状态写入hdfs中的,比如下图

    可以看出三个分区写成三个文件,每一批写入都是按照这种方式自动生成文件名并写入文件中,所以会造成最新一批覆盖之前的一批

    3.利用saveAsHadoopFile()自定义输出文件格式避免覆盖问题

    package com.surfilter.dp.timer.job;
    
    import com.surfilter.dp.timer.parse.BaseParams;
    import com.surfilter.dp.timer.parse.ParameterParse;
    import kafka.message.MessageAndMetadata;
    import kafka.serializer.StringDecoder;
    import org.apache.hadoop.mapred.lib.MultipleTextOutputFormat;
    import org.apache.spark.SparkConf;
    import org.apache.spark.api.java.JavaPairRDD;
    import org.apache.spark.api.java.JavaRDD;
    import org.apache.spark.api.java.JavaSparkContext;
    import org.apache.spark.api.java.function.Function;
    import org.apache.spark.api.java.function.PairFlatMapFunction;
    import org.apache.spark.api.java.function.VoidFunction;
    import org.apache.spark.sql.hive.HiveContext;
    import org.apache.spark.streaming.Seconds;
    import org.apache.spark.streaming.api.java.JavaInputDStream;
    import org.apache.spark.streaming.api.java.JavaStreamingContext;
    import org.apache.spark.streaming.kafka.KafkaUtils;
    import scala.Tuple2;
    
    import java.text.SimpleDateFormat;
    import java.util.ArrayList;
    import java.util.Date;
    import java.util.Iterator;
    import java.util.List;
    
    public class TestStreaming extends BaseParams {
        public static void main(String args[]) {
            String totalParameterString = null;
            if (null != args && args.length > 0) {
                totalParameterString = args[0];
            }
            if (null != totalParameterString && !"".equals(totalParameterString)) {
                ParameterParse parameterParse = new ParameterParse(totalParameterString);
                SparkConf conf = new SparkConf().setAppName(parameterParse.getSpark_app_name());
                setSparkConf(parameterParse, conf);
                JavaSparkContext sparkContext = new JavaSparkContext(conf);
                JavaStreamingContext streamingContext = new JavaStreamingContext(sparkContext, Seconds.apply(Long.parseLong(parameterParse.getSpark_streaming_duration())));
    
                JavaInputDStream<String> dStream = KafkaUtils.createDirectStream(streamingContext, String.class, String.class,
                        StringDecoder.class, StringDecoder.class, String.class,
                        generatorKafkaParams(parameterParse), generatorTopicOffsets(parameterParse, "test_20200509"),
                        new Function<MessageAndMetadata<String, String>, String>() {
                            private static final long serialVersionUID = 1L;
    
                            @Override
                            public String call(MessageAndMetadata<String, String> msgAndMd) throws Exception {
                                return msgAndMd.message();
                            }
                        });
    
    
                dStream.foreachRDD(new VoidFunction<JavaRDD<String>>() {
                    @Override
                    public void call(JavaRDD<String> rdd) {
                        JavaPairRDD<String, String> pairRDD = rdd.mapPartitionsToPair(new PairFlatMapFunction<Iterator<String>, String, String>() {
                            @Override
                            public Iterable<Tuple2<String, String>> call(Iterator<String> iterator) {
                                List<Tuple2<String, String>> returnTuple = new ArrayList<>();
                                while (iterator.hasNext()) {
                                    String message = iterator.next().toString();
                                    returnTuple.add(new Tuple2<>(message, ""));
                                }
                                return returnTuple;
                            }
                        });
    
                        String dt = new SimpleDateFormat("yyyyMMdd").format(new Date());
                        String hour = new SimpleDateFormat("HH").format(new Date());
                        String savePath = "hdfs://gawh220:8020/user/hive/warehouse/rzx_standard.db/meijs_test/dt=" + dt + "/hour=" + hour + "/";
    
                        pairRDD.saveAsHadoopFile(savePath, String.class, String.class, RDDMultipleTextOutputFormat.class);
                    }
                });
    
                streamingContext.start();
                streamingContext.awaitTermination();
                streamingContext.close();
            }
        }
    }
    
    class RDDMultipleTextOutputFormat extends MultipleTextOutputFormat {
        private static String system_time = System.currentTimeMillis() + "";
    
        @Override
        protected String generateFileNameForKeyValue(Object key, Object value, String name) {
            name = system_time + "-" + name;
            return super.generateFileNameForKeyValue(key, value, name);
        }
    }
    

    用命令行的方式往test_20200509的topic手动生产一段测试数据,发现spark streaming立马检测到并执行完成

    之后查看写入的hdfs文件

    发现hdfs文件写入正常,也是有数据的。之后不再继续命令行生产数据,当sprak streaming新的一个批次记录为0的任务开始执行并执行完成

    再观察写入的hdfs文件,发现并没有产生新的hdfs文件

    再命令行的方式往test_20200509的topic手动生产一段测试数据,发现spark streaming立马检测到并执行完成

    之后查看写入的hdfs文件,发现新写入的hdfs文件是追加到之前的文件的方式并且有数据的,如果之前的文件大小超过hdfs设定的大小,则会追加新的文件方式

    说明:这种方式不但可以避免覆盖问题,而且可以避免大量小文件

  • 相关阅读:
    大型网站技术架构:核心原理与案例分析笔记
    Springmvc 中org.springframework.http.converter.json.MappingJackson2HttpMessageConverter依赖jackson包
    idea 打开自动编译以及查看Problem窗口
    idea出现Error:Maven Resources Compiler: Maven project configuration required for module 'market' isn't available.
    Git常用命令
    mysql explain用法
    mysql中insert into select from的使用
    SpringMVC使用@PathVariable,@RequestBody,@ResponseBody,@RequestParam,@InitBinder
    git创建仓库
    context:component-scan扫描使用的use-default-filters
  • 原文地址:https://www.cnblogs.com/jiashengmei/p/12858947.html
Copyright © 2020-2023  润新知