• Flink RichSourceFunction应用,读关系型数据(mysql)数据写入关系型数据库(mysql)


    1. 写在前面

    Flink被誉为第四代大数据计算引擎组件,即可以用作基于离线分布式计算,也可以应用于实时计算。Flink的核心是转化为流进行计算。Flink三个核心:Source,Transformation,Sink。其中Source即为Flink计算的数据源,Transformation即为进行分布式流式计算的算子,也是计算的核心,Sink即为计算后的数据输出端。Flink Source原生支持包括Kafka,ES,RabbitMQ等一些通用的消息队列组件或基于文本的高性能非关系型数据库。而Flink Sink写原生也只支持类似Redis,Kafka,ES,RabbitMQ等一些通用的消息队列组件或基于文本的高性能非关系型数据库。而对于写入关系型数据库或Flink不支持的组件中,需要借助RichSourceFunction去实现,但这部分性能是比原生的差些,虽然Flink不建议这么做,但在大数据处理过程中,由于业务或技术架构的复杂性,有些特定的场景还是需要这样做,本篇博客就是介绍如何通过Flink RichSourceFunction来写关系型数据库,这里以写mysql为例。

    2. 引入依赖的jar包

    flink基础包
    flink-jdbc包
    mysql-jdbc包

    3. 继承RichSourceFunction包将jdbc封装读mysql

    package com.run;
    
    import java.sql.DriverManager;
    import java.sql.ResultSet;
    
    import org.apache.flink.api.java.tuple.Tuple10;
    import org.apache.flink.configuration.Configuration;
    import org.apache.flink.streaming.api.functions.source.RichSourceFunction;
    
    import com.mysql.jdbc.Connection;
    import com.mysql.jdbc.PreparedStatement;
    
    public class Flink2JdbcReader extends
    		RichSourceFunction<Tuple10<String, String, String, String, String, String, String, String, String, String>> {
    	private static final long serialVersionUID = 3334654984018091675L;
    
    	private Connection connect = null;
    	private PreparedStatement ps = null;
    
    	/*
    	 * (non-Javadoc)
    	 * 
    	 * @see org.apache.flink.api.common.functions.AbstractRichFunction#open(org.
    	 * apache.flink.configuration.Configuration) to use open database connect
    	 */
    	@Override
    	public void open(Configuration parameters) throws Exception {
    		super.open(parameters);
    		Class.forName("com.mysql.jdbc.Driver");
    		connect = (Connection) DriverManager.getConnection("jdbc:mysql://192.168.21.11:3306", "root", "flink");
    		ps = (PreparedStatement) connect
    				.prepareStatement("select col1,col2,col3,col4,col5,col6,col7,col8,col9,col10 from flink.test_tb");
    	}
    
    	/*
    	 * (non-Javadoc)
    	 * 
    	 * @see
    	 * org.apache.flink.streaming.api.functions.source.SourceFunction#run(org.
    	 * apache.flink.streaming.api.functions.source.SourceFunction.SourceContext)
    	 * to use excuted sql and return result
    	 */
    	@Override
    	public void run(
    			SourceContext<Tuple10<String, String, String, String, String, String, String, String, String, String>> collect)
    			throws Exception {
    		ResultSet resultSet = ps.executeQuery();
    		while (resultSet.next()) {
    			Tuple10<String, String, String, String, String, String, String, String, String, String> tuple = new Tuple10<String, String, String, String, String, String, String, String, String, String>();
    			tuple.setFields(resultSet.getString(1), resultSet.getString(2), resultSet.getString(3),
    					resultSet.getString(4), resultSet.getString(5), resultSet.getString(6), resultSet.getString(7),
    					resultSet.getString(8), resultSet.getString(9), resultSet.getString(10));
    			collect.collect(tuple);
    		}
    
    	}
    
    	/*
    	 * (non-Javadoc)
    	 * 
    	 * @see
    	 * org.apache.flink.streaming.api.functions.source.SourceFunction#cancel()
    	 * colse database connect
    	 */
    	@Override
    	public void cancel() {
    		try {
    			super.close();
    			if (connect != null) {
    				connect.close();
    			}
    			if (ps != null) {
    				ps.close();
    			}
    		} catch (Exception e) {
    			e.printStackTrace();
    		}
    
    	}
    
    }
    
    

    4. 继承RichSourceFunction包将jdbc封装写mysql

    package com.run;
    
    import java.sql.DriverManager;
    
    import org.apache.flink.api.java.tuple.Tuple10;
    import org.apache.flink.configuration.Configuration;
    import org.apache.flink.streaming.api.functions.sink.RichSinkFunction;
    
    import com.mysql.jdbc.Connection;
    import com.mysql.jdbc.PreparedStatement;
    
    public class Flink2JdbcWriter extends
    		RichSinkFunction<Tuple10<String, String, String, String, String, String, String, String, String, String>> {
    	private static final long serialVersionUID = -8930276689109741501L;
    
    	private Connection connect = null;
    	private PreparedStatement ps = null;
    
    	/*
    	 * (non-Javadoc)
    	 * 
    	 * @see org.apache.flink.api.common.functions.AbstractRichFunction#open(org.
    	 * apache.flink.configuration.Configuration) get database connect
    	 */
    	@Override
    	public void open(Configuration parameters) throws Exception {
    		super.open(parameters);
    		Class.forName("com.mysql.jdbc.Driver");
    		connect = (Connection) DriverManager.getConnection("jdbc:mysql://192.168.21.11:3306", "root", "flink");
    		ps = (PreparedStatement) connect.prepareStatement("insert into flink.test_tb1 values (?,?,?,?,?,?,?,?,?,?)");
    	}
    
    	/*
    	 * (non-Javadoc)
    	 * 
    	 * @see
    	 * org.apache.flink.streaming.api.functions.sink.SinkFunction#invoke(java.
    	 * lang.Object,
    	 * org.apache.flink.streaming.api.functions.sink.SinkFunction.Context) read
    	 * data from flink DataSet to database
    	 */
    	@Override
    	public void invoke(Tuple10<String, String, String, String, String, String, String, String, String, String> value,
    			Context context) throws Exception {
    		ps.setString(1, value.f0);
    		ps.setString(2, value.f1);
    		ps.setString(3, value.f2);
    		ps.setString(4, value.f3);
    		ps.setString(5, value.f4);
    		ps.setString(6, value.f5);
    		ps.setString(7, value.f6);
    		ps.setString(8, value.f7);
    		ps.setString(9, value.f8);
    		ps.setString(10, value.f9);
    		ps.executeUpdate();
    	}
    
    	/*
    	 * (non-Javadoc)
    	 * 
    	 * @see org.apache.flink.api.common.functions.AbstractRichFunction#close()
    	 * close database connect
    	 */
    	@Override
    	public void close() throws Exception {
    		try {
    			super.close();
    			if (connect != null) {
    				connect.close();
    			}
    			if (ps != null) {
    				ps.close();
    			}
    		} catch (Exception e) {
    			e.printStackTrace();
    		}
    	}
    }
    

    4. 代码解释

    对于Flink2JdbcReader的读
    里面有三个方法open,run,cancel,其中open方法是建立与关系型数据库的链接,这里其实就是普通的jdbc链接及mysql的地址,端口,库等信息。run方法是读取mysql数据转化为Flink独有的Tuple集合类型,可以根据代码看出其中的规律和Tuple8,Tuple9,Tuple10代表什么含义。cancel就很简单了关闭数据库连接

    对于Flink2JdbcWriter的写
    里面有三个方法open,invoke,close,其中open方法是建立与关系型数据库的链接,这里其实就是普通的jdbc链接及mysql的地址,端口,库等信息。invoke方法是将flink的数据类型插入到mysql,这里的写法与在web程序中写jdbc插入数据不太一样,因为flink独有的Tuple,可以根据代码看出其中的规律和Tuple8,Tuple9,Tuple10代表什么含义。close关闭数据库连接

    5. 测试:读mysql数据并继续写入mysql

    package com.run;
    
    import java.util.Date;
    
    import org.apache.flink.api.java.tuple.Tuple10;
    import org.apache.flink.streaming.api.datastream.DataStream;
    import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
    
    public class FlinkReadDbWriterDb {
    	public static void main(String[] args) throws Exception {。
    		final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
    		DataStream<Tuple10<String, String, String, String, String, String, String, String, String, String>> dataStream = env
    				.addSource(new Flink2JdbcReader());
    		
    		// tranfomat
    		
    		dataStream.addSink(new Flink2JdbcWriter());
    		env.execute("Flink cost DB data to write Database");
    		
    	}
    }
    
    

    6. 总结

    从测试代码中可以很清晰的看出Flink的逻辑:Source->Transformation->Sink,可以在addSource到addSink之间加入我们的业务逻辑算子。同时这里必须注意env.execute("Flink cost DB data to write Database");这个必须有而且必须要放到结尾,否则整个代码是不会执行的,至于为什么在后续的博客会讲

  • 相关阅读:
    如何处理DateTime日期时间格式
    ASP.NET访问域用户(AD活动目录)信息的类
    多层代理取真实IP地址
    自动播放MP3文件
    Windows7 下用 grub4dos 安装 Ubuntu
    javascript判断iphone/android手机横竖屏模式
    C#一个到多个Cookie的字符串添加到CookieCollection集合中【isGood代码】
    css 文本对齐4种方法
    让VirtualBox虚拟机实现开机自动后台运行
    MSXML2, XmlHttpClass基础
  • 原文地址:https://www.cnblogs.com/jiashengmei/p/10567343.html
Copyright © 2020-2023  润新知