RMQ-ST算法
时间限制:10000ms
单点时限:1000ms
内存限制:256MB
描述
小Hi和小Ho在美国旅行了相当长的一段时间之后,终于准备要回国啦!而在回国之前,他们准备去超市采购一些当地特产——比如汉堡(大雾)之类的回国。
但等到了超市之后,小Hi和小Ho发现者超市拥有的商品种类实在太多了——他们实在看不过来了!于是小Hi决定向小Ho委派一个任务:假设整个货架上从左到右拜访了N种商品,并且依次标号为1到N,每次小Hi都给出一段区间[L, R],小Ho要做的是选出标号在这个区间内的所有商品重量最轻的一种,并且告诉小Hi这个商品的重量,于是他们就可以毫不费劲的买上一大堆东西了——多么可悲的选择困难症患者。
(虽然说每次给出的区间仍然要小Hi来进行决定——但是小Hi最终机智的选择了使用随机数生成这些区间!但是为什么小Hi不直接使用随机数生成购物清单呢?——问那么多做什么!)
输入
每个测试点(输入文件)有且仅有一组测试数据。
每组测试数据的第1行为一个整数N,意义如前文所述。
每组测试数据的第2行为N个整数,分别描述每种商品的重量,其中第i个整数表示标号为i的商品的重量weight_i。
每组测试数据的第3行为一个整数Q,表示小Hi总共询问的次数。
每组测试数据的第N+4~N+Q+3行,每行分别描述一个询问,其中第N+i+3行为两个整数Li, Ri,表示小Hi询问的一个区间[Li, Ri]。
对于100%的数据,满足N<=10^6,Q<=10^6, 1<=Li<=Ri<=N,0<weight_i<=10^4。
输出
对于每组测试数据,对于每个小Hi的询问,按照在输入中出现的顺序,各输出一行,表示查询的结果:标号在区间[Li, Ri]中的所有商品中重量最轻的商品的重量。
- 样例输入
-
10 7334 1556 8286 1640 2699 4807 8068 981 4120 2179 5 3 4 2 8 2 4 6 8 7 10
- 样例输出
-
1640 981 1556 981 981
【分析】RMQ查询区间最值。#include <iostream> #include <cstring> #include <cstdio> #include <algorithm> #include <cmath> #include <string> #include <map> #include <stack> #include <queue> #include <vector> #define inf 2e9 #define met(a,b) memset(a,b,sizeof a) typedef long long ll; using namespace std; const int N = 1e6+5; const int M = 4e5+5; int dp[N][21]; int n,a[N],m; void RMQ_INIT(){ for(int i=1;i<=n;i++)dp[i][0]=a[i]; for(int j=1;1<<j<=n;j++){ for(int i=1;i+(1<<(j-1))<=n;i++){ int k=i+(1<<(j-1)); dp[i][j]=min(dp[i][j-1],dp[k][j-1]); } } } int RMQ_Query(int l,int r) { int k=0; while(1<<(k+1)<=r-l+1) k++; return min(dp[l][k],dp[r-(1<<k)+1][k]); } int main (){ scanf("%d",&n); for(int i=1;i<=n;i++)scanf("%d",&a[i]);
RMQ_INIT(); int l,r; scanf("%d",&m); while(m--){ scanf("%d%d",&l,&r); printf("%d ",RMQ_Query(l,r)); } return 0; }