Superbull
时间限制: 1 Sec 内存限制: 64 MB
提交: 49 解决: 13
[提交][状态][讨论版]
题目描述
Farmer John notices a very unusual property about the scores in matches! In any game, the combined score of the two teams always ends up being the bitwise exclusive OR (XOR) of the two team IDs. For example, if teams 12 and 20 were to play, then 24 points would be scored in that game, since 01100 XOR 10100 = 11000.
Farmer John believes that the more points are scored in a game, the more exciting the game is. Because of this, he wants to choose a series of games to be played such that the total number of points scored in the Superbull is maximized. Please help Farmer John organize the matches.
输入
输出
样例输入
4
3
6
9
10
样例输出
37
提示
OUTPUT DETAILS: One way to achieve 37 is as follows: FJ matches teams 3
and 9, and decides that 9 wins, so teams 6, 9, and 10 are left in the
tournament. He then matches teams 6 and 9, and lets team 6 win. Teams 6
and 10 are then left in the tournament. Finally, teams 6 and 10 face
off, and team 10 wins. The total number of points scored is (3 XOR 9) +
(6 XOR 9) + (6 XOR 10) = 10 + 15 + 12 = 37.
NOTE: The bitwise exclusive OR operation, commonly denoted by the ^
symbol, is a bitwise operation that performs the logical exclusive OR
operation on each position in two binary integers. The result in each
position is 1 if only the first bit is 1 or only the second bit is 1,
but is 0 if both bits are 0 or both are 1. For example: 10100 (decimal
20) XOR 01100 (decimal 12) = 11000 (decimal 24)
【分析】最大生成树,模板题
#include <iostream> #include <cstdio> #include <cstdlib> #include <cmath> #include <algorithm> #include <climits> #include <cstring> #include <string> #include <set> #include <map> #include <queue> #include <stack> #include <vector> #include <list> #include<functional> #define mod 1000000007 #define inf 0x3f3f3f3f #define pi acos(-1.0) using namespace std; typedef long long ll; const int N=2005; const int M=15005; struct Edg { int v,u; ll w; } edg[4000010]; bool cmp(Edg g,Edg h) { return g.w>h.w; } int n,m,maxn,cnt; int parent[N]; int a[N]; void init() { for(int i=0; i<n; i++)parent[i]=i; } void Build() { int u,v; for(int i=0; i<n; i++) { scanf("%d",&a[i]); } for(int i=0;i<n;i++){ for(int j=i+1;j<n;j++){ edg[++cnt].u=i; edg[cnt].v=j; edg[cnt].w=a[i]^a[j]; } } sort(edg,edg+cnt+1,cmp); } int Find(int x) { if(parent[x] != x) parent[x] = Find(parent[x]); return parent[x]; } void Union(int x,int y) { x = Find(x); y = Find(y); if(x == y) return; parent[y] = x; } void Kruskal() { ll sum=0; int num=0; int u,v; for(int i=0; i<=cnt; i++) { u=edg[i].u; v=edg[i].v; if(Find(u)!=Find(v)) { sum+=edg[i].w; num++; Union(u,v); } if(num>=n-1) { printf("%lld ",sum); break; } } } int main() { scanf("%d",&n); cnt=-1; init(); Build(); Kruskal(); return 0; }