• CRC 自动判断大端 小端


    /* aos_crc64.c -- compute CRC-64
     * Copyright (C) 2013 Mark Adler
     * Version 1.4  16 Dec 2013  Mark Adler
     */
    
    /*
      This software is provided 'as-is', without any express or implied
      warranty.  In no event will the author be held liable for any damages
      arising from the use of this software.
    
      Permission is granted to anyone to use this software for any purpose,
      including commercial applications, and to alter it and redistribute it
      freely, subject to the following restrictions:
    
      1. The origin of this software must not be misrepresented; you must not
         claim that you wrote the original software. If you use this software
         in a product, an acknowledgment in the product documentation would be
         appreciated but is not required.
      2. Altered source versions must be plainly marked as such, and must not be
         misrepresented as being the original software.
      3. This notice may not be removed or altered from any source distribution.
    
      Mark Adler
      madler@alumni.caltech.edu
     */
    
    /* Compute CRC-64 in the manner of xz, using the ECMA-182 polynomial,
       bit-reversed, with one's complement pre and post processing.  Provide a
       means to combine separately computed CRC-64's. */
    
    /* Version history:
       1.0  13 Dec 2013  First version
       1.1  13 Dec 2013  Fix comments in test code
       1.2  14 Dec 2013  Determine endianess at run time
       1.3  15 Dec 2013  Add eight-byte processing for big endian as well
                         Make use of the pthread library optional
       1.4  16 Dec 2013  Make once variable volatile for limited thread protection
     */
    
    #include "aos_crc64.h"
    
    /* 64-bit CRC polynomial with these coefficients, but reversed:
        64, 62, 57, 55, 54, 53, 52, 47, 46, 45, 40, 39, 38, 37, 35, 33, 32,
        31, 29, 27, 24, 23, 22, 21, 19, 17, 13, 12, 10, 9, 7, 4, 1, 0 */
    #define POLY UINT64_C(0xc96c5795d7870f42)
    
    /* Tables for CRC calculation -- filled in by initialization functions that are
       called once.  These could be replaced by constant tables generated in the
       same way.  There are two tables, one for each endianess.  Since these are
       static, i.e. local, one should be compiled out of existence if the compiler
       can evaluate the endianess check in crc64() at compile time. */
    static uint64_t crc64_little_table[8][256];
    static uint64_t crc64_big_table[8][256];
    
    /* Fill in the CRC-64 constants table. */
    static void crc64_init(uint64_t table[][256])
    {
        unsigned n, k;
        uint64_t crc;
    
        /* generate CRC-64's for all single byte sequences */
        for (n = 0; n < 256; n++) {
            crc = n;
            for (k = 0; k < 8; k++)
                crc = crc & 1 ? POLY ^ (crc >> 1) : crc >> 1;
            table[0][n] = crc;
        }
    
        /* generate CRC-64's for those followed by 1 to 7 zeros */
        for (n = 0; n < 256; n++) {
            crc = table[0][n];
            for (k = 1; k < 8; k++) {
                crc = table[0][crc & 0xff] ^ (crc >> 8);
                table[k][n] = crc;
            }
        }
    }
    
    /* This function is called once to initialize the CRC-64 table for use on a
       little-endian architecture. */
    static void crc64_little_init(void)
    {
        crc64_init(crc64_little_table);
    }
    
    /* Reverse the bytes in a 64-bit word. */
    static APR_INLINE uint64_t rev8(uint64_t a)
    {
        uint64_t m;
    
        m = UINT64_C(0xff00ff00ff00ff);
        a = ((a >> 8) & m) | (a & m) << 8;
        m = UINT64_C(0xffff0000ffff);
        a = ((a >> 16) & m) | (a & m) << 16;
        return a >> 32 | a << 32;
    }
    
    /* This function is called once to initialize the CRC-64 table for use on a
       big-endian architecture. */
    static void crc64_big_init(void)
    {
        unsigned k, n;
    
        crc64_init(crc64_big_table);
        for (k = 0; k < 8; k++)
            for (n = 0; n < 256; n++)
                crc64_big_table[k][n] = rev8(crc64_big_table[k][n]);
    }
    
    /* Run the init() function exactly once.  If pthread.h is not included, then
       this macro will use a simple static state variable for the purpose, which is
       not thread-safe.  The init function must be of the type void init(void). */
    #ifdef PTHREAD_ONCE_INIT
    #  define ONCE(init) 
        do { 
            static pthread_once_t once = PTHREAD_ONCE_INIT; 
            pthread_once(&once, init); 
        } while (0)
    #else
    #  define ONCE(init) 
        do { 
            static volatile int once = 1; 
            if (once) { 
                if (once++ == 1) { 
                    init(); 
                    once = 0; 
                } 
                else 
                    while (once) 
                        ; 
            } 
        } while (0)
    #endif
    
    /* Calculate a CRC-64 eight bytes at a time on a little-endian architecture. */
    static APR_INLINE uint64_t crc64_little(uint64_t crc, void *buf, size_t len)
    {
        unsigned char *next = buf;
    
        ONCE(crc64_little_init);
        crc = ~crc;
        while (len && ((uintptr_t)next & 7) != 0) {
            crc = crc64_little_table[0][(crc ^ *next++) & 0xff] ^ (crc >> 8);
            len--;
        }
        while (len >= 8) {
            crc ^= *(uint64_t *)next;
            crc = crc64_little_table[7][crc & 0xff] ^
                  crc64_little_table[6][(crc >> 8) & 0xff] ^
                  crc64_little_table[5][(crc >> 16) & 0xff] ^
                  crc64_little_table[4][(crc >> 24) & 0xff] ^
                  crc64_little_table[3][(crc >> 32) & 0xff] ^
                  crc64_little_table[2][(crc >> 40) & 0xff] ^
                  crc64_little_table[1][(crc >> 48) & 0xff] ^
                  crc64_little_table[0][crc >> 56];
            next += 8;
            len -= 8;
        }
        while (len) {
            crc = crc64_little_table[0][(crc ^ *next++) & 0xff] ^ (crc >> 8);
            len--;
        }
        return ~crc;
    }
    
    /* Calculate a CRC-64 eight bytes at a time on a big-endian architecture. */
    static APR_INLINE uint64_t crc64_big(uint64_t crc, void *buf, size_t len)
    {
        unsigned char *next = buf;
    
        ONCE(crc64_big_init);
        crc = ~rev8(crc);
        while (len && ((uintptr_t)next & 7) != 0) {
            crc = crc64_big_table[0][(crc >> 56) ^ *next++] ^ (crc << 8);
            len--;
        }
        while (len >= 8) {
            crc ^= *(uint64_t *)next;
            crc = crc64_big_table[0][crc & 0xff] ^
                  crc64_big_table[1][(crc >> 8) & 0xff] ^
                  crc64_big_table[2][(crc >> 16) & 0xff] ^
                  crc64_big_table[3][(crc >> 24) & 0xff] ^
                  crc64_big_table[4][(crc >> 32) & 0xff] ^
                  crc64_big_table[5][(crc >> 40) & 0xff] ^
                  crc64_big_table[6][(crc >> 48) & 0xff] ^
                  crc64_big_table[7][crc >> 56];
            next += 8;
            len -= 8;
        }
        while (len) {
            crc = crc64_big_table[0][(crc >> 56) ^ *next++] ^ (crc << 8);
            len--;
        }
        return ~rev8(crc);
    }
    
    /* Return the CRC-64 of buf[0..len-1] with initial crc, processing eight bytes
       at a time.  This selects one of two routines depending on the endianess of
       the architecture.  A good optimizing compiler will determine the endianess
       at compile time if it can, and get rid of the unused code and table.  If the
       endianess can be changed at run time, then this code will handle that as
       well, initializing and using two tables, if called upon to do so. */
    uint64_t aos_crc64(uint64_t crc, void *buf, size_t len)
    {
        uint64_t n = 1;
    
        return *(char *)&n ? crc64_little(crc, buf, len) :
                             crc64_big(crc, buf, len);
    }
    
    #define GF2_DIM 64      /* dimension of GF(2) vectors (length of CRC) */
    
    static uint64_t gf2_matrix_times(uint64_t *mat, uint64_t vec)
    {
        uint64_t sum;
    
        sum = 0;
        while (vec) {
            if (vec & 1)
                sum ^= *mat;
            vec >>= 1;
            mat++;
        }
        return sum;
    }
    
    static void gf2_matrix_square(uint64_t *square, uint64_t *mat)
    {
        unsigned n;
    
        for (n = 0; n < GF2_DIM; n++)
            square[n] = gf2_matrix_times(mat, mat[n]);
    }
    
    /* Return the CRC-64 of two sequential blocks, where crc1 is the CRC-64 of the
       first block, crc2 is the CRC-64 of the second block, and len2 is the length
       of the second block. */
    uint64_t aos_crc64_combine(uint64_t crc1, uint64_t crc2, uintmax_t len2)
    {
        unsigned n;
        uint64_t row;
        uint64_t even[GF2_DIM];     /* even-power-of-two zeros operator */
        uint64_t odd[GF2_DIM];      /* odd-power-of-two zeros operator */
    
        /* degenerate case */
        if (len2 == 0)
            return crc1;
    
        /* put operator for one zero bit in odd */
        odd[0] = POLY;              /* CRC-64 polynomial */
        row = 1;
        for (n = 1; n < GF2_DIM; n++) {
            odd[n] = row;
            row <<= 1;
        }
    
        /* put operator for two zero bits in even */
        gf2_matrix_square(even, odd);
    
        /* put operator for four zero bits in odd */
        gf2_matrix_square(odd, even);
    
        /* apply len2 zeros to crc1 (first square will put the operator for one
           zero byte, eight zero bits, in even) */
        do {
            /* apply zeros operator for this bit of len2 */
            gf2_matrix_square(even, odd);
            if (len2 & 1)
                crc1 = gf2_matrix_times(even, crc1);
            len2 >>= 1;
    
            /* if no more bits set, then done */
            if (len2 == 0)
                break;
    
            /* another iteration of the loop with odd and even swapped */
            gf2_matrix_square(odd, even);
            if (len2 & 1)
                crc1 = gf2_matrix_times(odd, crc1);
            len2 >>= 1;
    
            /* if no more bits set, then done */
        } while (len2 != 0);
    
        /* return combined crc */
        crc1 ^= crc2;
        return crc1;
    }
  • 相关阅读:
    【算法】剑指第二版面试题6 :从尾到头打印链表
    Go电商秒杀 (1)
    Go秒杀服务端优化
    Linux AUFS 文件系统
    mount挂载虚拟文件系统
    自己动手写docker之Linux命令(CentOS7.7)
    自己动手写docker之namespace和cgroup
    【协作式原创】自己动手写docker之urfave cli
    Go 1.14之前的死循环Case
    linux下定时执行任务的方法
  • 原文地址:https://www.cnblogs.com/jiangzhaowei/p/9255380.html
Copyright © 2020-2023  润新知