• tensorflow 模型保存与加载 和TensorFlow serving + grpc + docker项目部署


    TensorFlow 模型保存与加载

    TensorFlow中总共有两种保存和加载模型的方法。第一种是利用 tf.train.Saver() 来保存,第二种就是利用 SavedModel 来保存模型,接下来以自己项目中的代码为例。

    项目中模型的代码:

    class TensorFlowDKT(object):
        def __init__(self, config, batch_size):
            # 导入配置好的参数
            self.hiddens = hiddens = config.modelConfig.hidden_layers
            self.num_skills = num_skills = config.num_skills
            self.input_size = input_size = config.input_size
            self.keep_prob_value = config.modelConfig.dropout_keep_prob
    
            # 定义需要喂给模型的参数
            self.max_steps = tf.placeholder(tf.int32, name="max_steps")  # 当前batch中最大序列长度
            self.input_data = tf.placeholder(tf.float32, [None, None, input_size], name="input_x")
    
            self.sequence_len = tf.placeholder(tf.int32, [None], name="sequence_len")
            self.keep_prob = tf.placeholder(tf.float32, name="keep_prob")  # dropout keep prob
    
            self.target_id = tf.placeholder(tf.int32, [None, None], name="target_id")
            self.target_correctness = tf.placeholder(tf.float32, [None, None], name="target_correctness")
            self.flat_target_correctness = None
            self.batch_size = tf.placeholder(tf.int32, name="batch_size")
            
            # 构建lstm模型结构
            hidden_layers = []
            for idx, hidden_size in enumerate(hiddens):
                lstm_layer = tf.nn.rnn_cell.LSTMCell(num_units=hidden_size, state_is_tuple=True)
                hidden_layer = tf.nn.rnn_cell.DropoutWrapper(cell=lstm_layer,
                                                             output_keep_prob=self.keep_prob)
                hidden_layers.append(hidden_layer)
            self.hidden_cell = tf.nn.rnn_cell.MultiRNNCell(cells=hidden_layers, state_is_tuple=True)
    
            # 采用动态rnn,动态输入序列的长度
            outputs, self.current_state = tf.nn.dynamic_rnn(cell=self.hidden_cell,
                                                            inputs=self.input_data,
                                                            sequence_length=self.sequence_len,
                                                            dtype=tf.float32)
    
            # 隐层到输出层的权重系数[最后隐层的神经元数量,知识点数]
            output_w = tf.get_variable("W", [hiddens[-1], num_skills])
            output_b = tf.get_variable("b", [num_skills])
    
            self.output = tf.reshape(outputs, [-1, hiddens[-1]])
            # 因为权值共享的原因,对生成的矩阵[batch_size * self.max_steps, num_skills]中的每一行都加上b
            self.logits = tf.matmul(self.output, output_w) + output_b
    
            self.mat_logits = tf.reshape(self.logits, [-1, self.max_steps, num_skills])
    
            # 对每个batch中每个序列中的每个时间点的输出中的每个值进行sigmoid计算,这里的值表示对某个知识点的掌握情况,
            # 每个时间点都会输出对所有知识点的掌握情况
            self.pred_all = tf.sigmoid(self.mat_logits, name="pred_all")
    
            # 计算损失loss
            flat_logits = tf.reshape(self.logits, [-1])
    
            flat_target_correctness = tf.reshape(self.target_correctness, [-1])
            self.flat_target_correctness = flat_target_correctness
    
            flat_base_target_index = tf.range(self.batch_size * self.max_steps) * num_skills
    
            # 因为flat_logits的长度为batch_size * num_steps * num_skills,我们要根据每一步的target_id将其长度变成batch_size * num_steps
            flat_base_target_id = tf.reshape(self.target_id, [-1])
    
            flat_target_id = flat_base_target_id + flat_base_target_index
            # gather是从一个tensor中切片一个子集
            flat_target_logits = tf.gather(flat_logits, flat_target_id)
    
            # 对切片后的数据进行sigmoid转换
            self.pred = tf.sigmoid(tf.reshape(flat_target_logits, [-1, self.max_steps]), name="pred")
            # 将sigmoid后的值表示为0或1
            self.binary_pred = tf.cast(tf.greater_equal(self.pred, 0.5), tf.float32, name="binary_pred")
    
            # 定义损失函数
            with tf.name_scope("loss"):
                # flat_target_logits_sigmoid = tf.nn.log_softmax(flat_target_logits)
                # self.loss = -tf.reduce_mean(flat_target_correctness * flat_target_logits_sigmoid)
                self.loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=flat_target_correctness,
                                                                                   logits=flat_target_logits))

    在之后的预测时,我需要输入的参数有 input_data,max_steps,sequence_len,keep_prob,target_id,batch_size。输出的值有pred_all。

    首先来看第一种模型保存的方法:

    with tf.Graph().as_default():
                gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=1.0)
                session_conf = tf.ConfigProto(
                    allow_soft_placement=True,
                    log_device_placement=False,
                    gpu_options=gpu_options
                )
                sess = tf.Session(config=session_conf)
                ......
    
                    saver = tf.train.Saver(tf.global_variables())
                    sess.run(tf.global_variables_initializer())
    
                    print("初始化完毕,开始训练")
                    for i in range(config.trainConfig.epochs):
                        np.random.shuffle(train_seqs)
                        for params in dataGen.next_batch(train_seqs):
                            # 批次获得训练集,训练模型
                            self.train_step(params, train_op)
    
                            current_step = tf.train.global_step(sess, global_step)
                            # train_step.run(feed_dict={x: batch_train[0], y_actual: batch_train[1], keep_prob: 0.5})
                            # 对结果进行记录
                            if current_step % config.trainConfig.evaluate_every == 0:
                                print("
    Evaluation:")
                                # 获得测试数据
    
                                losses = []
                                accuracys = []
                                aucs = []
                                for params in dataGen.next_batch(test_seqs):
                                    loss, accuracy, auc = self.dev_step(params)
                                    losses.append(loss)
                                    accuracys.append(accuracy)
                                    aucs.append(auc)
    
                                time_str = datetime.datetime.now().isoformat()
                                print("dev: {}, step: {}, loss: {}, acc: {}, auc: {}".
                                      format(time_str, current_step, mean(losses), mean(accuracys), mean(aucs)))
    
                            if current_step % config.trainConfig.checkpoint_every == 0:
                                path = saver.save(sess, "model/my-model", global_step=current_step)
                                print("Saved model checkpoint to {}
    ".format(path))

    利用 tf.train.Saver() 保存模型非常简单,就只要上述代码中标红的两句就行了。

    模型加载的代码:

    graph = tf.Graph()
        with graph.as_default():
            gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.333)
            session_conf = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False, gpu_options=gpu_options)
            sess = tf.Session(config=session_conf)
    
            with sess.as_default():
                checkpoint_file = tf.train.latest_checkpoint("model/")
                saver = tf.train.import_meta_graph("{}.meta".format(checkpoint_file))
                saver.restore(sess, checkpoint_file)
    
                # 获得需要喂给模型的参数,输出的结果依赖的输入值
                input_x = graph.get_operation_by_name("test/dkt/input_x").outputs[0]
                target_id = graph.get_operation_by_name("test/dkt/target_id").outputs[0]
                keep_prob = graph.get_operation_by_name("test/dkt/keep_prob").outputs[0]
                max_steps = graph.get_operation_by_name("test/dkt/max_steps").outputs[0]
                sequence_len = graph.get_operation_by_name("test/dkt/sequence_len").outputs[0]
                batch_size = graph.get_operation_by_name("test/dkt/batch_size").outputs[0]
    
                # 获得输出的结果
                pred_all = graph.get_tensor_by_name("test/dkt/pred_all:0")
    
    for params in dataGen.next_batch(train_seqs):
                    print("step: {}".format(step))
    
                    target_correctness = params['target_correctness']
                    
                    pred_all_1 = sess.run([pred_all], feed_dict={input_x: params["input_x"],
                                                                 target_id: params["target_id"],
                                                                 keep_prob: 1.0,
                                                                  max_steps: params["max_len"],
                                                                  sequence_len: params["seq_len"],
                                                                  batch_size: len(params["seq_len"])})
                    print(params["seq_len"])
                    sequence_lens.append(params["seq_len"])
                    studentSkillMasterProbs.append(pred_all_1)
                    studentTargetId.append(params["target_id"])
                    studentTargetCorrectness.append(params["target_correctness"])

    加载模型时要把我们需要的输入参数和输出结果的 tensor 读出来,利用get_tensor_by_name() 的方法,方法中需要传入tensor 的名称,所以在定义模型类时需要为这些 tensor 指定 name 参数。之后就是直接 sess.run() 去运行模型进行预测。

    这种方法会保存四个文件 xxx.checkpoint,xxx.index,xxx.meta和 xxx.data_00000_of_00001

    第二种模型保存的方法:

    with tf.Graph().as_default():
                gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=1.0)
                session_conf = tf.ConfigProto(
                    allow_soft_placement=True,
                    log_device_placement=False,
                    gpu_options=gpu_options
                )
                sess = tf.Session(config=session_conf)
                self.sess = sess
    
                with sess.as_default():
                    # 实例化dkt模型对象
                    ......
    
                    builder = tf.saved_model.builder.SavedModelBuilder("./builder")
    
                    sess.run(tf.global_variables_initializer())
    
                    print("初始化完毕,开始训练")
                    for i in range(config.trainConfig.epochs):
                        ......
                        
                    inputs = {"input_x": tf.saved_model.utils.build_tensor_info(self.train_dkt.input_data),
                             "target_id": tf.saved_model.utils.build_tensor_info(self.train_dkt.target_id),
                             "max_steps": tf.saved_model.utils.build_tensor_info(self.train_dkt.max_steps),
                             "sequence_len": tf.saved_model.utils.build_tensor_info(self.train_dkt.sequence_len),
                             "keep_prob": tf.saved_model.utils.build_tensor_info(self.train_dkt.keep_prob),
                             "batch_size": tf.saved_model.utils.build_tensor_info(self.train_dkt.batch_size)}
    
                    outputs = {"pred_all": tf.saved_model.utils.build_tensor_info(self.train_dkt.pred_all)}
    
                    prediction_signature = tf.saved_model.signature_def_utils.build_signature_def(inputs=inputs, outputs=outputs,
                                                                                                  method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME)
                    legacy_init_op = tf.group(tf.tables_initializer(), name="legacy_init_op")
                    builder.add_meta_graph_and_variables(sess, [tf.saved_model.tag_constants.SERVING],
                                                        signature_def_map={"predict": prediction_signature}, legacy_init_op=legacy_init_op)
    
                    builder.save()

    利用 saved_model 也可以把整个模型中的变量全部保存起来,但更一般的形式是指定 输入参数和输出结果来进行保存,而且除了可以保存predict之外,还可以保存training,classify等等。

    模型加载的代码:

       graph = tf.Graph()
        with graph.as_default():
            gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.333)
            session_conf = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False, gpu_options=gpu_options)
            sess = tf.Session(config=session_conf)
            
            signature_key = "predict"  # 这里的值是要和保存模型中的 builder.add_meta_graph_and_variables()方法里面的 signature_def_map={"predict": prediction_signature} 对应上的。
       with tf.Session(graph=graph) as sess:
                meta_graph_def = tf.saved_model.loader.load(sess, [tf.saved_model.tag_constants.SERVING], "./builder")
                signature = meta_graph_def.signature_def
                input_x = sess.graph.get_tensor_by_name(signature[signature_key].inputs["input_x"].name)
                keep_prob = sess.graph.get_tensor_by_name(signature[signature_key].inputs["keep_prob"].name)
                target_id = sess.graph.get_tensor_by_name(signature[signature_key].inputs["target_id"].name)
                max_steps = sess.graph.get_tensor_by_name(signature[signature_key].inputs["max_steps"].name)
                sequence_len = sess.graph.get_tensor_by_name(signature[signature_key].inputs["sequence_len"].name)
                batch_size = sess.graph.get_tensor_by_name(signature[signature_key].inputs["batch_size"].name)
    
                pred_all = sess.graph.get_tensor_by_name(signature[signature_key].outputs["pred_all"].name)
                for params in dataGen.next_batch(train_seqs):
                    print("step: {}".format(step))
    
                    target_correctness = params['target_correctness']
                    
                    pred_all_1 = sess.run([pred_all], feed_dict={input_x: params["input_x"],
                                                                      target_id: params["target_id"],
                                                                      keep_prob: 1.0,
                                                                      max_steps: params["max_len"],
                                                                      sequence_len: params["seq_len"],
                                                                      batch_size: len(params["seq_len"])})
                    print(params["seq_len"])
                    sequence_lens.append(params["seq_len"])
                    studentSkillMasterProbs.append(pred_all_1)
                    studentTargetId.append(params["target_id"])
                    studentTargetCorrectness.append(params["target_correctness"])
    
                    step += 1

    模型加载和 tf.train.Saver() 保存的模型差不多,不过不需要指定在模型图中的全名。

    这种方法会保存一个文件 xxx.pb 和一个文件夹 variables,variables中有两个文件 variables.data_00000_of_00001(数字可能会有所不同,不确定)和variables.index。

    TensorFlow serving 服务布署

     利用上面第二种保存的模型可以构建TensorFlow serving 服务,具体的是利用docker来构建TensorFlow serving 的服务端。然后在客户端通过grpc来连接。整个步骤如下:

    服务器系统:Ubuntu16.04

    1,安装docker-ce

      具体的安装流程见官网

    2,拉取官方的TensorFlow serving 仓库,可以直接拉取最新版的,也可以自己选择版本

      docker pull tensorflow/serving:latest-devel

    3,启动容器,选择grpc的端口

      docker run -p 8500:8500 --name grpc -it tensorflow/serving:latest-devel

      8500端口:grpc的端口

      8501端口:restful api的端口

      除了grpc调用服务,也可以用restful api调用服务

    4,将自己的model文件复制到容器中

      本地模型路径:~/builder/00000123 。模型名称为builder,00000123为版本号(必须需要),00000123文件夹下面就是xxx.pb 文件和variables文件夹

      docker cp ~/model grpc:/online_model 。grpc 是我们的容器名称,将本地的模型copy到容器中的根路径下的online_model文件夹下

    5,在docker中启动TensorFlow serving服务

      进入到容器中:docker exec -it grpc bash

      启动TensorFlow serving服务:tensorflow_model_server --port=8500 --model_name=builder --model_base_path=/online_model/builder/

      这样服务端的TensorFlow serving就启动了

    6,客户端代码

    import grpc
    import numpy as np
    import tensorflow as tf
    from tensorflow_serving.apis import predict_pb2
    from tensorflow_serving.apis import prediction_service_pb2_grpc
    from tensorflow_serving.apis import prediction_service_pb2
    from grpc.beta import implementations
    
    dataGen = DataGenerator(fileName, config)  # 数据预处理的类
    dataGen.gen_attr()
    test_seqs = dataGen.test_seqs
    params = dataGen.format_data(test_seqs)
    input_x = params["input_x"][:1]
    max_steps = params["max_len"]
    batch_size = 1
    keep_prob = 1.0
    target_id = params["target_id"][:1]
    sequence_len = params["seq_len"][:1]
    
    # 利用grpc 进行连接
    channel = implementations.insecure_channel("192.168.39.39", 8500)
    stub = prediction_service_pb2.beta_create_PredictionService_stub(channel)
    request = predict_pb2.PredictRequest()
    # 模型的名称
    request.model_spec.name = "builder"
    # 签名的名称
    request.model_spec.signature_name = "predict"
    
    # 每次只支持传入一条数据进行预测,传入数据时要注意数据格式和模型定义时的格式一致
    request.inputs['input_x'].CopyFrom(tf.contrib.util.make_tensor_proto(input_x, dtype=tf.float32, shape=[input_x.shape[0], input_x.shape[1], input_x.shape[2]]))
    request.inputs['target_id'].CopyFrom(tf.contrib.util.make_tensor_proto(target_id, dtype=tf.int32, shape=[target_id.shape[0], target_id.shape[1]]))
    request.inputs['max_steps'].CopyFrom(tf.contrib.util.make_tensor_proto(max_steps, dtype=tf.int32))
    request.inputs['keep_prob'].CopyFrom(tf.contrib.util.make_tensor_proto(keep_prob, dtype=tf.float32))
    request.inputs["sequence_len"].CopyFrom(tf.contrib.util.make_tensor_proto(sequence_len, dtype=tf.int32, shape=[1]))
    request.inputs["batch_size"].CopyFrom(tf.contrib.util.make_tensor_proto(batch_size, dtype=tf.int32))
    
    # response返回的是protobuff的格式
    response = stub.Predict.future(request)
    
    # 去除预测的数值,对于many to many 的LSTM,输出的结果是多个,读取成列表的形式
    res_list = response.result().outputs["pred_all"].float_val

    利用TensorFlow serving搭建服务的具体流程就这么些,另外还支持gpu版的TensorFlow serving。但是需要安装nvidia-docker ,还需要启动nvidia-container-runtime等,总之很复杂,对于NLP中的任务,预测时用CPU也是完全可以的。

  • 相关阅读:
    JSP所需要掌握的部分
    Parameter index out of range (1 > number of parameters, which is 0).
    Servlet到Servlet的请求转发与重定向的区别
    servlet范围:数据共享
    hihocoder 1169 猜数字
    UVA 1149 Bin Packing
    Using a Comparison Function for the Key Type
    STL Iterators
    SPOJ Pouring Water
    求DAG上两点的最短距离
  • 原文地址:https://www.cnblogs.com/jiangxinyang/p/10022216.html
Copyright © 2020-2023  润新知