• poj1269


    基础题,直线间关系

    #include <iostream>
    #include <math.h>
    #include <iomanip>
    
    
    #define eps 1e-8
    #define zero(x) (((x)>0?(x):-(x))<eps)
    
    #define pi acos(-1.0)
    
    
    
    struct point
    {
    	double x, y;
    };
    
    struct line
    {
    	point a, b;
    };
    struct point3
    {
    	double x, y, z;
    };
    struct line3
    {
    	point3 a, b;
    };
    struct plane3
    {
    	point3 a, b, c;
    };
    
    
    //计算cross product (P1-P0)x(P2-P0)
    double xmult(point p1, point p2, point p0)
    {
    	return (p1.x - p0.x)*(p2.y - p0.y) - (p2.x - p0.x)*(p1.y - p0.y);
    }
    //计算dot product (P1-P0).(P2-P0)
    double dmult(point p1, point p2, point p0)
    {
    	return (p1.x - p0.x)*(p2.x - p0.x) + (p1.y - p0.y)*(p2.y - p0.y);
    }
    //计算cross product U . V
    point3 xmult(point3 u, point3 v)
    {
    	point3 ret;
    	ret.x = u.y*v.z - v.y*u.z;
    	ret.y = u.z*v.x - u.x*v.z;
    	ret.z = u.x*v.y - u.y*v.x;
    	return ret;
    }
    //计算dot product U . V
    double dmult(point3 u, point3 v)
    {
    	return u.x*v.x + u.y*v.y + u.z*v.z;
    }
    
    
    //两点距离
    double distance(point p1, point p2)
    {
    	return sqrt((p1.x - p2.x)*(p1.x - p2.x) + (p1.y - p2.y)*(p1.y - p2.y));
    }
    
    //判三点共线
    bool dots_inline(point p1, point p2, point p3)
    {
    	return zero(xmult(p1, p2, p3));
    }
    
    //判点是否在线段上,包括端点
    bool dot_online_in(point p, line l)
    {
    	return zero(xmult(p, l.a, l.b)) && (l.a.x - p.x)*(l.b.x - p.x) < eps && (l.a.y - p.y)*(l.b.y - p.y) < eps;
    }
    
    //判点是否在线段上,不包括端点
    bool dot_online_ex(point p, line l)
    {
    	return dot_online_in(p, l) && (!zero(p.x - l.a.x) || !zero(p.y - l.a.y)) && (!zero(p.x - l.b.x) || !zero(p.y - l.b.y));
    }
    
    //判两点在线段同侧,点在线段上返回0
    bool same_side(point p1, point p2, line l)
    {
    	return xmult(l.a, p1, l.b)*xmult(l.a, p2, l.b) > eps;
    }
    
    //判两点在线段异侧,点在线段上返回0
    bool opposite_side(point p1, point p2, line l)
    {
    	return xmult(l.a, p1, l.b)*xmult(l.a, p2, l.b) < -eps;
    }
    
    //判两直线平行
    bool parallel(line u, line v)
    {
    	return zero((u.a.x - u.b.x)*(v.a.y - v.b.y) - (v.a.x - v.b.x)*(u.a.y - u.b.y));
    }
    
    //判两直线垂直
    bool perpendicular(line u, line v)
    {
    	return zero((u.a.x - u.b.x)*(v.a.x - v.b.x) + (u.a.y - u.b.y)*(v.a.y - v.b.y));
    }
    
    //判两线段相交,包括端点和部分重合
    bool intersect_in(line u, line v)
    {
    	if (!dots_inline(u.a, u.b, v.a) || !dots_inline(u.a, u.b, v.b))
    		return !same_side(u.a, u.b, v) && !same_side(v.a, v.b, u);
    	return dot_online_in(u.a, v) || dot_online_in(u.b, v) || dot_online_in(v.a, u) || dot_online_in(v.b, u);
    }
    
    //判两线段相交,不包括端点和部分重合
    bool intersect_ex(line u, line v)
    {
    	return opposite_side(u.a, u.b, v) && opposite_side(v.a, v.b, u);
    }
    
    //计算两直线交点,注意事先判断直线是否平行!
    //线段交点请另外判线段相交(同时还是要判断是否平行!)
    point intersection(line u, line v)
    {
    	point ret = u.a;
    	double t = ((u.a.x - v.a.x)*(v.a.y - v.b.y) - (u.a.y - v.a.y)*(v.a.x - v.b.x)) / ((u.a.x - u.b.x)*(v.a.y - v.b.y) - (u.a.y - u.b.y)*(v.a.x - v.b.x));
    	ret.x += (u.b.x - u.a.x)*t;
    	ret.y += (u.b.y - u.a.y)*t;
    	return ret;
    }
    point intersection(point u1, point u2, point v1, point v2)
    {
    	point ret = u1;
    	double t = ((u1.x - v1.x)*(v1.y - v2.y) - (u1.y - v1.y)*(v1.x - v2.x)) / ((u1.x - u2.x)*(v1.y - v2.y) - (u1.y - u2.y)*(v1.x - v2.x));
    	ret.x += (u2.x - u1.x)*t;
    	ret.y += (u2.y - u1.y)*t;
    	return ret;
    }
    //点到直线上的最近点
    point ptoline(point p, line l)
    {
    	point t = p;
    	t.x += l.a.y - l.b.y, t.y += l.b.x - l.a.x;
    	return intersection(p, t, l.a, l.b);
    }
    
    //点到直线距离
    double disptoline(point p, line l)
    {
    	return fabs(xmult(p, l.a, l.b)) / distance(l.a, l.b);
    }
    
    //点到线段上的最近点
    point ptoseg(point p, line l)
    {
    	point t = p;
    	t.x += l.a.y - l.b.y, t.y += l.b.x - l.a.x;
    	if (xmult(l.a, t, p)*xmult(l.b, t, p) > eps)
    		return distance(p, l.a) < distance(p, l.b) ? l.a : l.b;
    	return intersection(p, t, l.a, l.b);
    }
    
    //点到线段距离
    double disptoseg(point p, line l)
    {
    	point t = p;
    	t.x += l.a.y - l.b.y, t.y += l.b.x - l.a.x;
    	if (xmult(l.a, t, p)*xmult(l.b, t, p) > eps)
    		return distance(p, l.a) < distance(p, l.b) ? distance(p, l.a) : distance(p, l.b);
    	return fabs(xmult(p, l.a, l.b)) / distance(l.a, l.b);
    }
    
    //矢量V 以P 为顶点逆时针旋转angle 并放大scale 倍
    point rotate(point v, point p, double angle, double scale)
    {
    	point ret = p;
    	v.x -= p.x, v.y -= p.y;
    	p.x = scale*cos(angle);
    	p.y = scale*sin(angle);
    	ret.x += v.x*p.x - v.y*p.y;
    	ret.y += v.x*p.y + v.y*p.x;
    	return ret;
    }
    
    //计算三角形面积,输入三顶点
    double area_triangle(point p1, point p2, point p3)
    {
    	return fabs(xmult(p1, p2, p3)) / 2;
    }
    
    //计算三角形面积,输入三边长
    double area_triangle(double a, double b, double c)
    {
    	double s = (a + b + c) / 2;
    	return sqrt(s*(s - a)*(s - b)*(s - c));
    }
    
    //计算多边形面积,顶点按顺时针或逆时针给出
    double area_polygon(int n, point* p)
    {
    	double s1 = 0, s2 = 0;
    	int i;
    	for (i = 0; i < n; i++)
    		s1 += p[(i + 1)%n].y*p[i].x, s2 += p[(i + 1)%n].y*p[(i + 2)%n].x;
    	return fabs(s1 - s2) / 2;
    }
    
    //计算圆心角lat 表示纬度,-90<=w<=90,lng 表示经度
    //返回两点所在大圆劣弧对应圆心角,0<=angle<=pi
    double angle(double lng1, double lat1, double lng2, double lat2)
    {
    	double dlng = fabs(lng1 - lng2)*pi / 180;
    	while (dlng >= pi + pi)
    		dlng -= pi + pi;
    	if (dlng > pi)
    		dlng = pi + pi - dlng;
    	lat1 *= pi / 180, lat2 *= pi / 180;
    	return acos(cos(lat1)*cos(lat2)*cos(dlng) + sin(lat1)*sin(lat2));
    }
    
    //计算距离,r 为球半径
    double line_dist(double r, double lng1, double lat1, double lng2, double lat2)
    {
    	double dlng = fabs(lng1 - lng2)*pi / 180;
    	while (dlng >= pi + pi)
    		dlng -= pi + pi;
    	if (dlng > pi)
    		dlng = pi + pi - dlng;
    	lat1 *= pi / 180, lat2 *= pi / 180;
    	return r*sqrt(2 - 2 * (cos(lat1)*cos(lat2)*cos(dlng) + sin(lat1)*sin(lat2)));
    }
    
    //计算球面距离,r 为球半径
    inline double sphere_dist(double r, double lng1, double lat1, double lng2, double lat2)
    {
    	return r*angle(lng1, lat1, lng2, lat2);
    }
    
    //外心
    point circumcenter(point a, point b, point c)
    {
    	line u, v;
    	u.a.x = (a.x + b.x) / 2;
    	u.a.y = (a.y + b.y) / 2;
    	u.b.x = u.a.x - a.y + b.y;
    	u.b.y = u.a.y + a.x - b.x;
    	v.a.x = (a.x + c.x) / 2;
    	v.a.y = (a.y + c.y) / 2;
    	v.b.x = v.a.x - a.y + c.y;
    	v.b.y = v.a.y + a.x - c.x;
    	return intersection(u, v);
    }
    
    //内心
    point incenter(point a, point b, point c)
    {
    	line u, v;
    	double m, n;
    	u.a = a;
    	m = atan2(b.y - a.y, b.x - a.x);
    	n = atan2(c.y - a.y, c.x - a.x);
    	u.b.x = u.a.x + cos((m + n) / 2);
    	u.b.y = u.a.y + sin((m + n) / 2);
    	v.a = b;
    	m = atan2(a.y - b.y, a.x - b.x);
    	n = atan2(c.y - b.y, c.x - b.x);
    	v.b.x = v.a.x + cos((m + n) / 2);
    	v.b.y = v.a.y + sin((m + n) / 2);
    	return intersection(u, v);
    }
    
    //垂心
    point perpencenter(point a, point b, point c)
    {
    	line u, v;
    	u.a = c;
    	u.b.x = u.a.x - a.y + b.y;
    	u.b.y = u.a.y + a.x - b.x;
    	v.a = b;
    	v.b.x = v.a.x - a.y + c.y;
    	v.b.y = v.a.y + a.x - c.x;
    	return intersection(u, v);
    }
    //重心
    //到三角形三顶点距离的平方和最小的点
    //三角形内到三边距离之积最大的点
    point barycenter(point a, point b, point c)
    {
    	line u, v;
    	u.a.x = (a.x + b.x) / 2;
    	u.a.y = (a.y + b.y) / 2;
    	u.b = c;
    	v.a.x = (a.x + c.x) / 2;
    	v.a.y = (a.y + c.y) / 2;
    	v.b = b;
    	return intersection(u, v);
    }
    
    //费马点
    //到三角形三顶点距离之和最小的点
    point fermentpoint(point a, point b, point c)
    {
    	point u, v;
    	double step = fabs(a.x) + fabs(a.y) + fabs(b.x) + fabs(b.y) + fabs(c.x) + fabs(c.y);
    	int i, j, k;
    	u.x = (a.x + b.x + c.x) / 3;
    	u.y = (a.y + b.y + c.y) / 3;
    	while (step > 1e-10)
    	{
    		for (k = 0; k < 10; step /= 2, k++)
    		{
    			for (i = -1; i <= 1; i++)
    			{
    				for (j = -1; j <= 1; j++)
    				{
    					v.x = u.x + step*i;
    					v.y = u.y + step*j;
    					if (distance(u, a) + distance(u, b) + distance(u, c) > distance(v, a) + distance(v, b) + distance(v, c))
    					{
    						u = v;
    					}
    				}
    			}
    		}
    	}
    	return u;
    }
    
    //矢量差 U - V
    point3 subt(point3 u, point3 v)
    {
    	point3 ret;
    	ret.x = u.x - v.x;
    	ret.y = u.y - v.y;
    	ret.z = u.z - v.z;
    	return ret;
    }
    
    ///三维///
    //取平面法向量
    point3 pvec(plane3 s)
    {
    	return xmult(subt(s.a, s.b), subt(s.b, s.c));
    }
    point3 pvec(point3 s1, point3 s2, point3 s3)
    {
    	return xmult(subt(s1, s2), subt(s2, s3));
    }
    
    //两点距离,单参数取向量大小
    double distance(point3 p1, point3 p2)
    {
    	return sqrt((p1.x - p2.x)*(p1.x - p2.x) + (p1.y - p2.y)*(p1.y - p2.y) + (p1.z - p2.z)*(p1.z - p2.z));
    }
    
    //向量大小
    double vlen(point3 p)
    {
    	return sqrt(p.x*p.x + p.y*p.y + p.z*p.z);
    }
    
    //判三点共线
    bool dots_inline(point3 p1, point3 p2, point3 p3)
    {
    	return vlen(xmult(subt(p1, p2), subt(p2, p3))) < eps;
    }
    
    //判四点共面
    bool dots_onplane(point3 a, point3 b, point3 c, point3 d)
    {
    	return zero(dmult(pvec(a, b, c), subt(d, a)));
    }
    
    //判点是否在线段上,包括端点和共线
    bool dot_online_in(point3 p, line3 l)
    {
    	return zero(vlen(xmult(subt(p, l.a), subt(p, l.b)))) && (l.a.x - p.x)*(l.b.x - p.x) < eps && (l.a.y - p.y)*(l.b.y - p.y) < eps && (l.a.z - p.z)*(l.b.z - p.z) < eps;
    }
    
    //判点是否在线段上,不包括端点
    bool dot_online_ex(point3 p, line3 l)
    {
    	return dot_online_in(p, l) && (!zero(p.x - l.a.x) || !zero(p.y - l.a.y) || !zero(p.z - l.a.z)) && (!zero(p.x - l.b.x) || !zero(p.y - l.b.y) || !zero(p.z - l.b.z));
    }
    
    //判点是否在空间三角形上,包括边界,三点共线无意义
    bool dot_inplane_in(point3 p, plane3 s)
    {
    	return zero(vlen(xmult(subt(s.a, s.b), subt(s.a, s.c))) - vlen(xmult(subt(p, s.a), subt(p, s.b))) - vlen(xmult(subt(p, s.b), subt(p, s.c))) - vlen(xmult(subt(p, s.c), subt(p, s.a))));
    }
    
    //判点是否在空间三角形上,不包括边界,三点共线无意义
    bool dot_inplane_ex(point3 p, plane3 s)
    {
    	return dot_inplane_in(p, s) && vlen(xmult(subt(p, s.a), subt(p, s.b))) > eps && vlen(xmult(subt(p, s.b), subt(p, s.c))) > eps && vlen(xmult(subt(p, s.c), subt(p, s.a))) > eps;
    }
    
    //判两点在线段同侧,点在线段上返回0,不共面无意义
    bool same_side(point3 p1, point3 p2, line3 l)
    {
    	return dmult(xmult(subt(l.a, l.b), subt(p1, l.b)), xmult(subt(l.a, l.b), subt(p2, l.b))) > eps;
    }
    
    //判两点在线段异侧,点在线段上返回0,不共面无意义
    bool opposite_side(point3 p1, point3 p2, line3 l)
    {
    	return dmult(xmult(subt(l.a, l.b), subt(p1, l.b)), xmult(subt(l.a, l.b), subt(p2, l.b))) < -eps;
    }
    
    //判两点在平面同侧,点在平面上返回0
    bool same_side(point3 p1, point3 p2, plane3 s)
    {
    	return dmult(pvec(s), subt(p1, s.a))*dmult(pvec(s), subt(p2, s.a)) > eps;
    }
    bool same_side(point3 p1, point3 p2, point3 s1, point3 s2, point3 s3)
    {
    	return dmult(pvec(s1, s2, s3), subt(p1, s1))*dmult(pvec(s1, s2, s3), subt(p2, s1)) > eps;
    }
    
    //判两点在平面异侧,点在平面上返回0
    bool opposite_side(point3 p1, point3 p2, plane3 s)
    {
    	return dmult(pvec(s), subt(p1, s.a))*dmult(pvec(s), subt(p2, s.a)) < -eps;
    }
    bool opposite_side(point3 p1, point3 p2, point3 s1, point3 s2, point3 s3)
    {
    	return dmult(pvec(s1, s2, s3), subt(p1, s1))*dmult(pvec(s1, s2, s3), subt(p2, s1)) < -eps;
    }
    //判两直线平行
    bool parallel(line3 u, line3 v)
    {
    	return vlen(xmult(subt(u.a, u.b), subt(v.a, v.b))) < eps;
    }
    
    //判两平面平行
    bool parallel(plane3 u, plane3 v)
    {
    	return vlen(xmult(pvec(u), pvec(v))) < eps;
    }
    
    //判直线与平面平行
    bool parallel(line3 l, plane3 s)
    {
    	return zero(dmult(subt(l.a, l.b), pvec(s)));
    }
    bool parallel(point3 l1, point3 l2, point3 s1, point3 s2, point3 s3)
    {
    	return zero(dmult(subt(l1, l2), pvec(s1, s2, s3)));
    }
    
    //判两直线垂直
    bool perpendicular(line3 u, line3 v)
    {
    	return zero(dmult(subt(u.a, u.b), subt(v.a, v.b)));
    }
    
    //判两平面垂直
    bool perpendicular(plane3 u, plane3 v)
    {
    	return zero(dmult(pvec(u), pvec(v)));
    }
    
    //判直线与平面平行
    bool perpendicular(line3 l, plane3 s)
    {
    	return vlen(xmult(subt(l.a, l.b), pvec(s))) < eps;
    }
    
    //判两线段相交,包括端点和部分重合
    bool intersect_in(line3 u, line3 v)
    {
    	if (!dots_onplane(u.a, u.b, v.a, v.b))
    		return 0;
    	if (!dots_inline(u.a, u.b, v.a) || !dots_inline(u.a, u.b, v.b))
    		return !same_side(u.a, u.b, v) && !same_side(v.a, v.b, u);
    	return dot_online_in(u.a, v) || dot_online_in(u.b, v) || dot_online_in(v.a, u) || dot_online_in(v.b, u);
    }
    
    //判两线段相交,不包括端点和部分重合
    bool intersect_ex(line3 u, line3 v)
    {
    	return dots_onplane(u.a, u.b, v.a, v.b) && opposite_side(u.a, u.b, v) && opposite_side(v.a, v.b, u);
    }
    
    //判线段与空间三角形相交,包括交于边界和(部分)包含
    bool intersect_in(line3 l, plane3 s)
    {
    	return !same_side(l.a, l.b, s) && !same_side(s.a, s.b, l.a, l.b, s.c) && !same_side(s.b, s.c, l.a, l.b, s.a) && !same_side(s.c, s.a, l.a, l.b, s.b);
    }
    
    //判线段与空间三角形相交,不包括交于边界和(部分)包含
    bool intersect_ex(line3 l, plane3 s)
    {
    	return opposite_side(l.a, l.b, s) && opposite_side(s.a, s.b, l.a, l.b, s.c) && opposite_side(s.b, s.c, l.a, l.b, s.a) && opposite_side(s.c, s.a, l.a, l.b, s.b);
    }
    
    //计算两直线交点,注意事先判断直线是否共面和平行!
    //线段交点请另外判线段相交(同时还是要判断是否平行!)
    point3 intersection(line3 u, line3 v)
    {
    	point3 ret = u.a;
    	double t = ((u.a.x - v.a.x)*(v.a.y - v.b.y) - (u.a.y - v.a.y)*(v.a.x - v.b.x))
    		/ ((u.a.x - u.b.x)*(v.a.y - v.b.y) - (u.a.y - u.b.y)*(v.a.x - v.b.x));
    	ret.x += (u.b.x - u.a.x)*t;
    	ret.y += (u.b.y - u.a.y)*t;
    	ret.z += (u.b.z - u.a.z)*t;
    	return ret;
    }
    
    //计算直线与平面交点,注意事先判断是否平行,并保证三点不共线!
    //线段和空间三角形交点请另外判断
    point3 intersection(line3 l, plane3 s)
    {
    	point3 ret = pvec(s);
    	double t = (ret.x*(s.a.x - l.a.x) + ret.y*(s.a.y - l.a.y) + ret.z*(s.a.z - l.a.z)) / (ret.x*(l.b.x - l.a.x) + ret.y*(l.b.y - l.a.y) + ret.z*(l.b.z - l.a.z));
    	ret.x = l.a.x + (l.b.x - l.a.x)*t;
    	ret.y = l.a.y + (l.b.y - l.a.y)*t;
    	ret.z = l.a.z + (l.b.z - l.a.z)*t;
    	return ret;
    }
    point3 intersection(point3 l1, point3 l2, point3 s1, point3 s2, point3 s3)
    {
    	point3 ret = pvec(s1, s2, s3);
    	double t = (ret.x*(s1.x - l1.x) + ret.y*(s1.y - l1.y) + ret.z*(s1.z - l1.z)) /
    		(ret.x*(l2.x - l1.x) + ret.y*(l2.y - l1.y) + ret.z*(l2.z - l1.z));
    	ret.x = l1.x + (l2.x - l1.x)*t;
    	ret.y = l1.y + (l2.y - l1.y)*t;
    	ret.z = l1.z + (l2.z - l1.z)*t;
    	return ret;
    }
    
    //计算两平面交线,注意事先判断是否平行,并保证三点不共线!
    line3 intersection(plane3 u, plane3 v)
    {
    	line3 ret;
    	ret.a = parallel(v.a, v.b, u.a, u.b, u.c) ? intersection(v.b, v.c, u.a, u.b, u.c) : intersection(v.a, v.b, u.a, u.b, u.c);
    	ret.b = parallel(v.c, v.a, u.a, u.b, u.c) ? intersection(v.b, v.c, u.a, u.b, u.c) : intersection(v.c, v.a, u.a, u.b, u.c);
    	return ret;
    }
    line3 intersection(point3 u1, point3 u2, point3 u3, point3 v1, point3 v2, point3 v3)
    {
    	line3 ret;
    	ret.a = parallel(v1, v2, u1, u2, u3) ? intersection(v2, v3, u1, u2, u3) : intersection(v1, v2, u1, u2, u3);
    	ret.b = parallel(v3, v1, u1, u2, u3) ? intersection(v2, v3, u1, u2, u3) : intersection(v3, v1, u1, u2, u3);
    	return ret;
    }
    //点到直线距离
    double ptoline(point3 p, line3 l)
    {
    	return vlen(xmult(subt(p, l.a), subt(l.b, l.a))) / distance(l.a, l.b);
    }
    
    //点到平面距离
    double ptoplane(point3 p, plane3 s)
    {
    	return fabs(dmult(pvec(s), subt(p, s.a))) / vlen(pvec(s));
    }
    
    //直线到直线距离
    double linetoline(line3 u, line3 v)
    {
    	point3 n = xmult(subt(u.a, u.b), subt(v.a, v.b));
    	return fabs(dmult(subt(u.a, v.a), n)) / vlen(n);
    }
    
    //两直线夹角cos 值
    double angle_cos(line3 u, line3 v)
    {
    	return dmult(subt(u.a, u.b), subt(v.a, v.b)) / vlen(subt(u.a, u.b)) / vlen(subt(v.a, v.b));
    }
    
    //两平面夹角cos 值
    double angle_cos(plane3 u, plane3 v)
    {
    	return dmult(pvec(u), pvec(v)) / vlen(pvec(u)) / vlen(pvec(v));
    }
    
    //直线平面夹角sin 值
    double angle_sin(line3 l, plane3 s)
    {
    	return dmult(subt(l.a, l.b), pvec(s)) / vlen(subt(l.a, l.b)) / vlen(pvec(s));
    }
    
    int main()
    {
    	int t;
    	std::cin >> t;
    	std::cout << "INTERSECTING LINES OUTPUT" << std::endl;
    	while (t--)
    	{
    		line a, b;
    		std::cin >> a.a.x >> a.a.y >> a.b.x >> a.b.y >> b.a.x >> b.a.y >> b.b.x >> b.b.y;
    
    		if (xmult(a.a, a.b, b.a) == 0 && xmult(a.a, a.b, b.b) == 0)
    		{
    			std::cout << "LINE" << std::endl;
    		}
    		else if (parallel(a, b))
    		{
    			std::cout << "NONE" << std::endl;
    		}
    		else
    		{
    			point temp;
    			temp = intersection(a, b);
    			std::cout << std::fixed << std::setprecision(2) << "POINT" << ' ' << temp.x << ' ' << temp.y << std::endl;
    		}
    	}
    	std::cout << "END OF OUTPUT" << std::endl;
    }
    


  • 相关阅读:
    [ES6] for..in && for..of
    [Falcor] Building Paths Programmatically
    [Polymer] Custom Elements: Styling
    [Polymer] Introduction
    [Redux] Implementing combineReducers() from Scratch
    [Redux] Reducer Composition with combineReducers()
    [AngularJS] Exploring the Angular 1.5 .component() method
    生物-脑-脑容量:脑容量
    生物学-脑:脑(动物中枢神经系统主要部分)
    生物:生物
  • 原文地址:https://www.cnblogs.com/jiangu66/p/3221511.html
Copyright © 2020-2023  润新知