import java.util.Vector; class Hamilton { int start; int a[][]; int len; int x[]; // 记录回路 boolean flag; public Hamilton(int[][] a, int n, int start) { this.a = a; this.len = n; this.flag = false; this.x = new int[n]; this.start = start - 1; } public boolean isComplete(int k) { return a[x[k - 1]][x[0]] == 1; } public Vector<Integer> makeIterms(int k) { Vector<Integer> iterms = new Vector<Integer>(); if (k == 0) { iterms.add(start); } else { for (int i = 0; i < len; i++) if (a[x[k - 1]][i] == 1) // 相当重要 iterms.add(i); } return iterms; // 第k-1层结点的所有临界点 } public void printSolution(int k) { System.out.print(x[0] + 1); for (int i = 1; i < len; i++) System.out.print("->" + (x[i] + 1)); System.out.println("->" + (x[0] + 1)); } public boolean isPartial(int k) { for (int i = 0; i < k; i++) if (x[i] == x[k]) return false; return true; } } class General { // 回溯算法的引导框架 public static void backtrack(Hamilton p) { explore(p, 0); if (!p.flag) System.out.println("no sulution!"); } // 回溯算法的探索框架 private static void explore(Hamilton p, int k) { if (k >= p.len) { if (p.isComplete(k)) { p.flag = true; p.printSolution(k); } return; } Vector<Integer> iterms = p.makeIterms(k); for (int i = 0; i < iterms.size(); i++) { p.x[k] = iterms.get(i); if (p.isPartial(k)) explore(p, k + 1); } } } public class Test { public static void main(String args[]) { int c[][] = { { 0, 1, 1, 1, 0 }, { 1, 0, 1, 0, 1 }, { 1, 1, 0, 1, 0 }, { 1, 0, 1, 0, 1 }, { 0, 1, 0, 1, 0 } }; Hamilton p; p = new Hamilton(c, 5, 1); General.backtrack(p); } }