上篇博客给出了 STM32F10X 系列单片机中CRC 单元的用法。还指出了这个CRC 单元计算的结果与常见的CRC32 算法得到的结果不相同。但是为什么不相同,是什么原因造成的却没有写出来。这里再补一篇,把这些都说清楚。
下面先给个crc32的计算函数,这个函数计算的结果与STM32F 单片机上硬件单元的计算结果相同。
uint32_t crc32(uint32_t *addr, int num, uint32_t crc) { int i; for (; num > 0; num--) { crc = crc ^ (*addr++); for (i = 0; i < 32; i++) { if (crc & 0x80000000) crc = (crc << 1) ^ POLY; else crc <<= 1; } crc &= 0xFFFFFFFF; } return(crc); }
在我写的文章《写给嵌入式程序员的循环冗余校验(CRC)算法入门引导》(http://blog.csdn.net/liyuanbhu/article/details/7882789) 中给了个利用查表法计算crc 的程序。那个程序稍微修改一点就能计算CRC32。下面给出改动后的程序。
//crc32.h #ifndef CRC32_H_INCLUDED #define CRC32_H_INCLUDED #ifdef __cplusplus #if __cplusplus extern "C"{ #endif #endif /* __cplusplus */ #include<stdint.h> /* * The CRC parameters. Currently configured for CRC32. * CRC32=X32+X26+X23+X22+X16+X12+X11+X10+X8+X7+X5+X4+X2+X1+X0 */ #define POLYNOMIAL 0x04C11DB7 #define INITIAL_REMAINDER 0xFFFFFFFF #define FINAL_XOR_VALUE 0x00000000 /* * The width of the CRC calculation and result. * Modify the typedef for an 8 or 32-bit CRC standard. */ typedef uint32_t width_t; #define WIDTH (8 * sizeof(width_t)) #define TOPBIT (1 << (WIDTH - 1)) /** * Initialize the CRC lookup table. * This table is used by crcCompute() to make CRC computation faster. */ void crcInit(void); /** * Compute the CRC checksum of a binary message block. * @para message, 用来计算的数据 * @para nBytes, 数据的长度 * @note This function expects that crcInit() has been called * first to initialize the CRC lookup table. */ width_t crcCompute(unsigned char * message, unsigned int nBytes, width_t remainder); #ifdef __cplusplus #if __cplusplus } #endif #endif /* __cplusplus */ #endif // CRC32_H_INCLUDED
对应的C程序如下:
#include "crc32.h" /* * An array containing the pre-computed intermediate result for each * possible byte of input. This is used to speed up the computation. */ static width_t crcTable[256]; /** * Initialize the CRC lookup table. * This table is used by crcCompute() to make CRC computation faster. */ void crcInit(void) { width_t remainder; width_t dividend; int bit; /* Perform binary long division, a bit at a time. */ for(dividend = 0; dividend < 256; dividend++) { /* Initialize the remainder. */ remainder = dividend << (WIDTH - 8); /* Shift and XOR with the polynomial. */ for(bit = 0; bit < 8; bit++) { /* Try to divide the current data bit. */ if(remainder & TOPBIT) { remainder = (remainder << 1) ^ POLYNOMIAL; } else { remainder = remainder << 1; } } /* Save the result in the table. */ crcTable[dividend] = remainder; } } /* crcInit() */ /** * Compute the CRC checksum of a binary message block. * @para message, 用来计算的数据 * @para nBytes, 数据的长度 * @note This function expects that crcInit() has been called * first to initialize the CRC lookup table. */ width_t crcCompute(unsigned char * message, unsigned int nBytes, width_t remainder) { unsigned int offset; unsigned char byte; //width_t remainder = INITIAL_REMAINDER; /* Divide the message by the polynomial, a byte at a time. */ for( offset = 0; offset < nBytes; offset++) { byte = (remainder >> (WIDTH - 8)) ^ message[offset]; remainder = crcTable[byte] ^ (remainder << 8); } /* The final remainder is the CRC result. */ return (remainder ^ FINAL_XOR_VALUE); } /* crcCompute() */
不过用这个程序直接计算得到的CRC 值与STM32 给出的并不相同。之所以会这样是因为字节序的原因。可以举个例子来说明这个问题。比如我们有一片内存区域要计算CRC值。这片内存区域的起始地址是 0x1000,共有8个字节。用 crcCompute() 函数计算时是按照地址顺序依次传入各个字节。也就是先计算0x1000 处的字节,再计算0x0001 处的字节,以此类推最后计算0x1007 地址处的字节。而 STM32 的硬件CRC单元是以32位的字为单位计算的。我们知道CRC 实际上是个多项式的除法运算,而除法运算是从高位算起的。也就是相当于它是按照 0x1003、0x1002、0x1001、0x1000 这个顺序计算第一个字,然后按照0x1007、0x1006、0x1005、x1004 的顺序计算第二个字。因此。我们要是预先将字节序调换一下得到结果就没有问题了。这就有了下面的改造。其中 remainder 传入 0xffffffff。因为STM32 中的CRC余数初始值为0xffffffff。
uint32_t stm32crc32(uint32_t * message, unsigned int nWords, uint32_t remainder) { unsigned int offset; unsigned char byte; unsigned char *p = (unsigned char *)message; //width_t remainder = INITIAL_REMAINDER; /* Divide the message by the polynomial, a byte at a time. */ for( offset = 0; offset < nWords; offset++) { byte = (remainder >> (WIDTH - 8)) ^ p[3]; remainder = crcTable[byte] ^ (remainder << 8); byte = (remainder >> (WIDTH - 8)) ^ p[2]; remainder = crcTable[byte] ^ (remainder << 8); byte = (remainder >> (WIDTH - 8)) ^ p[1]; remainder = crcTable[byte] ^ (remainder << 8); byte = (remainder >> (WIDTH - 8)) ^ p[0]; remainder = crcTable[byte] ^ (remainder << 8); p += 4; } /* The final remainder is the CRC result. */ return (remainder); } /* crcCompute() */
大家可以验证这个函数的计算结果与STM32上的结果完全一样。
写到这里本该就结束了,不过我要多说一句,之所以要这么麻烦的调换字节序,都是小端(little endian)惹的祸。要是都采用大端格式就没这些麻烦的转换了。