problem1 link
将$a_{0},a_{1},...,a_{n-1}$看做$a_{0}x^{0}+a_{1}x^{1}+...+a_{n-1}x^{n-1}$。那么第一种操作相当于乘以$1+x$模$x^{n}-1$,第二种操作相当于乘以$1+x^{n-1}$模$x^{n}-1$。所以操作的顺序无关。所以只需要枚举两种操作各用了多少次即可
problem2 link
对于$m$个数字$x_{1},x_{2},..,x_{m}$来说,设$a=frac{sum_{i=1}^{m}x_{i}}{m}$,那么$frac{1}{m}sum_{i=1}^{m}(x_{i}-a)^{2}=frac{1}{m}left (sum_{i=1}^{m}x_{i}^{2}-frac{left (sum_{i=1}^{m}x_{i} ight )^{2}}{m^{2}} ight )$
所以,对于子树$T$,可以计算包含子树树根的大小为$m$的连通块有多少个,同时记录所有情况的$s_{1}=sum_{i=1}^{m}x_{i}^{2},s_{2}=left (sum_{i=1}^{m}x_{i} ight )^{2}$之和。这样就是一个树上的动态规划。
problem3 link
首先,将所有的限制按照最近公共祖先分配到每个对应的结点上。那么现在就是每个子树有一些限制。
首先,分配结点以满足左右子树的限制。对于当前结点,枚举当前结点映射为最后的哪一个结点。
这时候对于限制,可以确定每个限制的$(x,y)$,$x$或者$y$:(1)一定在左侧;(2)一定在右侧;(3)都可以;(4)不是一定在左侧或者右侧但是$x$和$y$不能在一侧。第三类情况最后可以随意分配,比较简单。第四种情况暴力枚举$x$在左侧还是右侧。这样就可以确定所有的结点。
code for problem1
#include <algorithm> #include <string> #include <vector> class LR { public: std::string construct(const std::vector<long long> &s, const std::vector<long long> &t) { if (s == t) { return ""; } int n = static_cast<int>(s.size()); long long x0 = std::accumulate(s.begin(), s.end(), 0ll); long long x1 = std::accumulate(t.begin(), t.end(), 0ll); if (x0 == 0) { return "No solution"; } int k = 0; while (x0 < x1) { ++k; x0 <<= 1; } if (x0 != x1) { return "No solution"; } auto Check = [&](std::vector<long long> s, int x, int y) { for (int i = 0; i < x; ++i) { long long t = s[n - 1]; for (int i = n - 1; i > 0; --i) { s[i] += s[i - 1]; } s[0] += t; } for (int i = 0; i < y; ++i) { long long t = s[0]; for (int i = 0; i < n - 1; ++i) { s[i] += s[i + 1]; } s[n - 1] += t; } return s == t; }; for (int i = 0; i <= k; ++i) { if (Check(s, i, k - i)) { return std::string(i, 'L') + std::string(k - i, 'R'); } } return "No solution"; } };
code for problem2
#include <vector> using BigDouble = __float128; class AverageVarianceSubtree { struct Node { BigDouble s1 = 0.0; BigDouble s2 = 0.0; BigDouble s3 = 0.0; BigDouble number = 0; void Reset() { s1 = s2 = s3 = 0.0; number = 0; } Node Merge(const Node &other) { Node result; result.s1 = s1 * other.number + other.s1 * number; result.s2 = s2 * other.number + other.s2 * number + 2 * s3 * other.s3; result.s3 = s3 * other.number + other.s3 * number; result.number = number * other.number; return std::move(result); } void Add(const Node &other) { s1 += other.s1; s2 += other.s2; s3 += other.s3; number += other.number; } }; public: double average(const std::vector<int> &p, const std::vector<int> &weight) { n = static_cast<int>(p.size()) + 1; tree.resize(n); for (int i = 0; i < n - 1; ++i) { tree[i + 1].push_back(p[i]); tree[p[i]].push_back(i + 1); } this->weights = weight; dp.resize(n); for (int i = 0; i < n; ++i) { dp[i].resize(n + 1); } BigDouble sum = 0; BigDouble total = 0; Dfs(0, -1); for (int root = 0; root < n; ++root) { for (int i = 1; i <= n; ++i) { sum += (dp[root][i].s1 * i - dp[root][i].s2) / i / i; total += dp[root][i].number; } } return static_cast<double>(sum / total); } private: void Dfs(int u, int prev) { long long w1 = weights[u]; long long w2 = w1 * w1; dp[u][0].number = 1; for (auto v : tree[u]) { if (v == prev) { continue; } Dfs(v, u); std::vector<Node> f(n + 1); for (int i = 0; i <= n; ++i) { for (int j = 0; j <= n; ++j) { if (i + j <= n) { f[i + j].Add(dp[v][i].Merge(dp[u][j])); } } } dp[u] = std::move(f); } for (int i = n - 1; i >= 0; --i) { dp[u][i + 1].s1 = dp[u][i].s1 + dp[u][i].number * w2; dp[u][i + 1].s2 = dp[u][i].s2 + dp[u][i].number * w2 + 2 * w1 * dp[u][i].s3; dp[u][i + 1].s3 = dp[u][i].s3 + dp[u][i].number * w1; dp[u][i + 1].number = dp[u][i].number; } } std::vector<std::vector<int>> tree; std::vector<int> weights; std::vector<std::vector<Node>> dp; int n = 0; };
code for problem3
#include <unordered_set> #include <vector> class BinaryTreeAndPermutation { struct Node { long long contain_ps = 0; long long contain = 0; long long used = 0; int left = -1; int right = -1; int total = 0; std::vector<std::pair<int, int>> constrains; int n = 0; void Used(int t) { used |= 1ll << t; } void AddConstrain(int x, int y) { for (const auto &e : constrains) { if ((e.first == x && e.second == y) || (e.first == y && e.second == x)) { return; } } constrains.emplace_back(x, y); } size_t UnUsedNodeNumber() const { size_t num = 0; for (int i = 0; i < n; ++i) { if ((contain & (1ll << i)) != 0 && (used & (1ll << i)) == 0) { ++num; } } return num; } int UnUsedNode() const { for (int i = 0; i < n; ++i) { if ((contain & (1ll << i)) != 0 && (used & (1ll << i)) == 0) { return i; } } return -1; } long long AllPs() const { long long m = 0; for (const auto &x : constrains) { m |= 1ll << x.first; m |= 1ll << x.second; } return m; } bool Has(int x) const { return (contain_ps & (1ll << x)) != 0; } }; public: std::vector<int> findPermutation(const std::vector<int> &lef, const std::vector<int> &rig, const std::vector<int> &a, const std::vector<int> &b, const std::vector<int> &c) { n = static_cast<int>(lef.size()); tree.resize(n); for (int i = 0; i < n; ++i) { tree[i].left = lef[i]; tree[i].right = rig[i]; tree[i].n = n; } for (size_t i = 0; i < a.size(); ++i) { tree[c[i]].AddConstrain(a[i], b[i]); } result.resize(n, -1); if (!Dfs(0)) { return {}; } for (int i = 0; i < n; ++i) { if (result[i] == -1) { result[i] = tree[0].UnUsedNode(); tree[0].Used(result[i]); } } return result; } private: bool Split( const std::vector<std::pair<int, int>> &undecided, std::vector<std::pair<std::unordered_set<int>, std::unordered_set<int>>> *result) { int m = static_cast<int>(undecided.size()); std::vector<bool> visited(m); for (int i = 0; i < m; ++i) { if (!visited[i]) { result->emplace_back(); auto &curr = result->back(); curr.first.insert(undecided[i].first); curr.second.insert(undecided[i].second); while (true) { bool updated = false; for (int j = i + 1; j < m; ++j) { if (!visited[j]) { int x = undecided[j].first; int y = undecided[j].second; if ((curr.first.count(x) > 0 && curr.first.count(y)) > 0 || (curr.second.count(x) > 0 && curr.second.count(y) > 0)) { return false; } if (curr.first.count(x) > 0 || curr.second.count(y) > 0) { curr.first.insert(x); curr.second.insert(y); updated = true; visited[j] = true; } else if (curr.first.count(y) > 0 || curr.second.count(x) > 0) { curr.first.insert(y); curr.second.insert(x); updated = true; visited[j] = true; } } } if (!updated) { break; } } } } return true; } bool Check(int root, int root_p) { Node &node = tree[root]; Node &left = tree[node.left]; Node &right = tree[node.right]; if (root_p != -1 && ((left.contain_ps & (1ll << root_p)) != 0 || (right.contain_ps & (1ll << root_p)) != 0)) { return false; } std::unordered_set<int> must_left; std::unordered_set<int> must_right; std::unordered_set<int> root_pair; std::vector<std::pair<int, int>> undecided; for (const auto &x : node.constrains) { if (x.first == root_p && x.second == root_p) { continue; } if (x.first == root_p) { if (!left.Has(x.second) && !right.Has(x.second)) { root_pair.insert(x.second); } } else if (x.second == root_p) { if (!left.Has(x.first) && !right.Has(x.first)) { root_pair.insert(x.first); } } else if (left.Has(x.first) || right.Has(x.second)) { if (!left.Has(x.first)) { must_left.insert(x.first); } if (!right.Has(x.second)) { must_right.insert(x.second); } } else if (left.Has(x.second) || right.Has(x.first)) { if (!left.Has(x.second)) { must_left.insert(x.second); } if (!right.Has(x.first)) { must_right.insert(x.first); } } else { undecided.push_back(x); } } for (auto x : must_left) { if (must_right.count(x) > 0) { return false; } } for (auto x : must_right) { if (must_left.count(x) > 0) { return false; } } for (const auto &e : undecided) { if (root_pair.count(e.first) > 0) { root_pair.erase(e.first); } if (root_pair.count(e.second) > 0) { root_pair.erase(e.second); } } while (true) { bool deleted = false; for (size_t i = 0; i < undecided.size(); ++i) { int x = undecided[i].first; int y = undecided[i].second; if ((must_left.count(x) > 0 && must_left.count(y) > 0) || (must_right.count(x) > 0 && must_right.count(y) > 0)) { return false; } if ((must_left.count(x) > 0 && must_right.count(x) > 0) || (must_left.count(y) > 0 && must_right.count(y) > 0)) { return false; } if (must_left.count(x) > 0 || must_right.count(y) > 0) { must_left.insert(x); must_right.insert(y); deleted = true; undecided.erase(undecided.begin() + i); break; } else if (must_left.count(y) > 0 || must_right.count(x) > 0) { must_left.insert(y); must_right.insert(x); deleted = true; undecided.erase(undecided.begin() + i); break; } } if (!deleted) { break; } } for (int x : must_left) { root_pair.erase(x); } for (int x : must_right) { root_pair.erase(x); } if (tree[node.left].UnUsedNodeNumber() < must_left.size() || tree[node.right].UnUsedNodeNumber() < must_right.size()) { return false; } std::vector<std::pair<std::unordered_set<int>, std::unordered_set<int>>> splits; if (!Split(undecided, &splits)) { return false; } size_t total = must_left.size() + must_right.size() + root_pair.size(); for (const auto &e : splits) { total += e.first.size() + e.second.size(); } if (static_cast<int>(total) > tree[root].total) { return false; } int m = static_cast<int>(splits.size()); bool valid_assign = false; for (int i = 0; i < (1 << m); ++i) { size_t left_num = 0; size_t right_num = 0; for (int j = 0; j < m; ++j) { size_t num1 = splits[j].first.size(); size_t num2 = splits[j].second.size(); if ((i & (1 << j)) == 0) { left_num += num1; right_num += num2; } else { left_num += num2; right_num += num1; } } if (left_num + must_left.size() <= tree[node.left].UnUsedNodeNumber() && right_num + must_right.size() <= tree[node.right].UnUsedNodeNumber()) { valid_assign = true; for (int j = 0; j < m; ++j) { if ((i & (1 << j)) == 0) { must_left.insert(splits[j].first.begin(), splits[j].first.end()); must_right.insert(splits[j].second.begin(), splits[j].second.end()); } else { must_right.insert(splits[j].first.begin(), splits[j].first.end()); must_left.insert(splits[j].second.begin(), splits[j].second.end()); } } break; } } if (!valid_assign) { return false; } for (auto x : root_pair) { if (tree[node.left].UnUsedNodeNumber() > must_left.size()) { must_left.insert(x); } else { must_right.insert(x); } } for (auto x : must_left) { int t = tree[node.left].UnUsedNode(); result[x] = t; tree[node.left].Used(t); } for (auto x : must_right) { int t = tree[node.right].UnUsedNode(); result[x] = t; tree[node.right].Used(t); } node.used = tree[node.left].used | tree[node.right].used; if (root_p != -1) { result[root_p] = root; node.used |= 1ll << root; } node.contain = tree[node.left].contain | tree[node.right].contain | 1ll << root; return true; } bool Dfs(int root) { Node &node = tree[root]; if (node.left == -1) { node.contain = 1ll << root; node.total = 1; if (!node.constrains.empty()) { int p = node.constrains.front().first; for (const auto &x : node.constrains) { if (p != x.first || p != x.second) { return false; } } node.contain_ps = 1ll << p; node.used = 1ll << root; result[p] = root; } return true; } if (!Dfs(node.left) || !Dfs(node.right)) { return false; } long long cur_ps = node.AllPs(); long long left_ps = tree[node.left].contain_ps; long long right_ps = tree[node.right].contain_ps; node.contain_ps = cur_ps | left_ps | right_ps; node.total = 1 + tree[node.left].total + tree[node.right].total; Node &left = tree[node.left]; Node &right = tree[node.right]; int root_p = -1; for (const auto &x : node.constrains) { if ((left.Has(x.first) && left.Has(x.second)) || (right.Has(x.first) && right.Has(x.second)) || (left.Has(x.first) && right.Has(x.first)) || (left.Has(x.second) && right.Has(x.second))) { return false; } if (x.first == x.second) { if (root_p != -1 && root_p != x.first) { return false; } root_p = x.first; } } if (root_p != -1) { return Check(root, root_p); } else { if (Check(root, -1)) { return true; } for (int i = 0; i < n; ++i) { if ((cur_ps & (1ll << i)) != 0 && Check(root, i)) { return true; } } return false; } } std::vector<int> result; std::vector<Node> tree; int n = 0; };