频率分辨率是指将两个相邻谱峰分开的能力。在实际应用中是指分辨两个不同频率信号的最小间隔。研究数字频谱最有效方法通常是离散傅里叶变换。
定义
第一种解释
频率分辨率可以理解为在使用DFT时,在频率轴上的所能得到的最小频率间隔
其中,N为采样点数, 为采样频率, 为采样间隔。所以 就是采样前模拟信号的时间长度T,所以信号长度越长,频率分辨率越好。
采样点数的多少与要求多大的频率分辨率有关。
例如:机器转速3000r/min=50Hz,如果要分析的故障频率估计在8倍频以下,要求谱图上频率分辨率ΔF=1 Hz ,则采样频率和采样点数设置为:
最高分析频率Fm=3000/8·50Hz=400Hz;
采样频率Fs=2.56·Fm=2.56 ·400Hz=1024Hz;
采样点数N=2.56·(Fm/ΔF)=2.56·(400Hz/1Hz)=1024
谱线数M=N/2.56=1024/2.56=400条
按照FFT变换,实际上得到的也是1024点的谱线,但是我们知道数学计算上存在负频率,是对称的,因此,实际上我们关注的是正频率部分对应的谱线,也就是说正频率有512线,为什么我们通常又说这种情况下是400线呢,就是因为通常情况下由于频率混叠和时域截断的影响,通常认为401线到512线的频谱精度不高而不予考虑。
另外,采样点数也不是随便设置的,即不是越大越好,反之亦然。对于旋转机械必须满足整周期采样,以消除频率畸形,单纯提高分辨率也不能消除频率畸形。过去,有人以为数据越长越好,或随便定时域信号长度,其实,这样做是在某些概念上不清楚,例如,不清楚整周期采样。
不产生频率混迭的最低采样频率Fs要求在2倍最大分析频率Fm,之所以采用2.56倍主要跟计算机二进制的表示方式有关。其主要目的是避免信号混淆保证高频信号不被歪曲成低频信号。
采样长度T的选择首先要保证能反映信号的全貌,对瞬态信号应包括整个瞬态过程;对周期信号,理论上采集一个周期信号就可以了。其次需考虑频率分辩率,采样长度T在最大分析频率Fm确定的情况下与频率分辩率△f是反比关系,也就是T越长△f越小即频率分辩率越高。
一般的分析软件都是设置谱线数M,采样点数N=2.56M。信号分析中常用的采样点数是512、1024、2048、4096等。等效于我们常说的200、400、800、1600线等频谱线数,频谱分析一般采样点数选取2的整数次方。△f=Fm/M,可见谱线数M越大频率分辩率△f越小即频率分辩率越高。
在电机的故障诊断中,为了发现边带间隔为极通频率(一般在1Hz以下)的峰值,常常需要极高的分辩率(1Hz以下),一般选择210HzFm,6400谱线。
至于整周期采样是很难实现的,必然会因为信号截断而产生泄露,为了避免这些误差,所以要采取加窗的办法。