• Django(51)drf渲染模块源码分析


    前言

    渲染模块的原理和解析模块是一样,drf默认的渲染有2种方式,一种是json格式,另一种是模板方式。
     

    渲染模块源码入口

    入口:APIView类中dispatch方法中的:self.response = self.finalize_response(request, response, *args, **kwargs)
     

    渲染模块源码分析

    我们首先点击finalize_response进入查看源码

    def finalize_response(self, request, response, *args, **kwargs):
        """
        Returns the final response object.
        """
        # Make the error obvious if a proper response is not returned
        # 断言是否是HttpResponseBase对象
        assert isinstance(response, HttpResponseBase), (
            'Expected a `Response`, `HttpResponse` or `HttpStreamingResponse` '
            'to be returned from the view, but received a `%s`'
            % type(response)
        )
        
        # 判断是否是Response对象
        if isinstance(response, Response):
            if not getattr(request, 'accepted_renderer', None):
                # 渲染模块的正式入口
                neg = self.perform_content_negotiation(request, force=True)
                request.accepted_renderer, request.accepted_media_type = neg
    
            response.accepted_renderer = request.accepted_renderer
            response.accepted_media_type = request.accepted_media_type
            response.renderer_context = self.get_renderer_context()
    
        # Add new vary headers to the response instead of overwriting.
        vary_headers = self.headers.pop('Vary', None)
        if vary_headers is not None:
            patch_vary_headers(response, cc_delim_re.split(vary_headers))
    
        for key, value in self.headers.items():
            response[key] = value
    
        return response
    

    上述代码是响应模块的源码,该源码中包含了渲染模块的源码,就是这句neg = self.perform_content_negotiation(request, force=True),我们可以点击查看

    def perform_content_negotiation(self, request, force=False):
        """
        Determine which renderer and media type to use render the response.
        """
        # 确定使用哪种渲染器和媒体类型来渲染响应。
        # 渲染器列表
        renderers = self.get_renderers()
        conneg = self.get_content_negotiator()
    
        try:
            return conneg.select_renderer(request, renderers, self.format_kwarg)
        except Exception:
            if force:
                return (renderers[0], renderers[0].media_type)
            raise
    

    代码中有个get_renderers就是渲染器列表,点击查看

    def get_renderers(self):
        """
        Instantiates and returns the list of renderers that this view can use.
        """
        return [renderer() for renderer in self.renderer_classes]
    

    这就是渲染器列表的源码,跟解析器列表的源码大同小异,接着再点击renderer_classer查看

    renderer_classes = api_settings.DEFAULT_RENDERER_CLASSES
    

    到这里我们就知道了,drf默认的渲染器在settings下的DEFAUIT_RENDERER_CLASSES中,配置如下

    'DEFAULT_RENDERER_CLASSES': [
            'rest_framework.renderers.JSONRenderer',
            'rest_framework.renderers.BrowsableAPIRenderer',
        ],
    

    如果我们想局部配置渲染器,只需在自己定义的视图类中添加render_classes 即可,一般也不用做修改,以上分析只是让大家知道drf是怎么配置渲染器的,这样以后我们自定义渲染器也就十分简单了

  • 相关阅读:
    自己写的一个校验IP、IP掩码、IP段的方法
    JS 数组方法splice的源码探究
    element ui 的时间选择控件
    浅谈闭包
    tensorFlow-深度学习训练并行模式
    tensorflow-TensorBoard
    tensorflow-RNN和LSTM
    tensorflow-TFRecord报错ValueError: Protocol message Feature has no "feature" field.
    tensorflow-mnist报错[WinError 10060] 由于连接方在一段时间后没有正确答复解决办法
    旋转图片,增加神经网络的准确率
  • 原文地址:https://www.cnblogs.com/jiakecong/p/14862223.html
Copyright © 2020-2023  润新知