• hdu 3208 Integer’s Power 筛法


    Integer’s Power

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)



    Problem Description
    LMY and YY are number theory lovers. They like to find and solve some interesting number theory problems together. One day, they become interested in some special numbers, which can be expressed as powers of smaller numbers.

    For example, 9=3^2, 64=2^6, 1000=10^3 …

    For a given positive integer y, if we can find a largest integer k and a smallest positive integer x, such that x^k=y, then the power of y is regarded as k.
    It is very easy to find the power of an integer. For example:

    The power of 9 is 2.
    The power of 64 is 6.
    The power of 1000 is 3.
    The power of 99 is 1.
    The power of 1 does not exist.

    But YY wants to calculate the sum of the power of the integers from a to b. It seems not easy. Can you help him?
     
    Input
    The input consists of multiple test cases.
    For each test case, there is one line containing two integers a and b. (2<=a<=b<=10^18)

    End of input is indicated by a line containing two zeros.
     
    Output
    For each test case, output the sum of the power of the integers from a to b.
     
    Sample Input
    2 10 248832 248832 0 0
     
    Sample Output
    13 5
     
    Source

    思路:卡精度;

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<iostream>
    #include<cstdio>
    #include<cmath>
    #include<string>
    #include<queue>
    #include<algorithm>
    #include<stack>
    #include<cstring>
    #include<vector>
    #include<list>
    #include<bitset>
    #include<set>
    #include<map>
    #include<time.h>
    using namespace std;
    #define LL long long
    #define pi (4*atan(1.0))
    #define eps 1e-8
    #define bug(x)  cout<<"bug"<<x<<endl;
    const int N=1e4+10,M=1e6+10,inf=1e9+10;
    const LL INF=1e18+10,mod=1e9+7;
    
    LL big[10]={0,0,1000000000,1000000,40000};
    const LL T=(LL)1<<31;
    
    LL multi(LL a,LL b)
    {
        LL ans=1;
        while(b)
        {
            if(b&1)
            {
                double judge=1.0*INF/ans;
                if(a>judge) return -1;
                ans*=a;
            }
            b>>=1;
            if(a>T&&b>0) return -1;
            a=a*a;
        }
        return ans;
    }
    
    LL findd(LL x,LL k)
    {
        LL r=(LL)pow(x,1.0/k);
        LL t,p;
        p=multi(r,k);
        if(p==x) return r;
        if(p>x||p==-1) r--;
        else
        {
            t=multi(r+1,k);
            if(t!=-1&&t<=x) r++;
        }
        return r;
    }
    LL dp[110];
    LL xjhz(LL x)
    {
        memset(dp,0,sizeof(dp));
        dp[1]=x-1;
        for(int i=2;i<=4;i++)
        {
            int s=2,e=big[i],ans=-1;
            while(s<=e)
            {
                int mid=(s+e)>>1;
                if(multi(mid,i)<=x)
                {
                    ans=mid;
                    s=mid+1;
                }
                else e=mid-1;
            }
            if(ans!=-1)dp[i]=ans-1;
        }
        for(int i=5;i<=60;i++)
        {
            dp[i]=findd(x,i)-1;
        }
        for(int i=60;i>=1;i--)
        {
            for(int j=i+i;j<=60;j+=i)
                dp[i]-=dp[j];
        }
        LL out=0;
        for(int i=1;i<=60;i++)
            out+=1LL*i*dp[i];
        return out;
    }
    int main()
    {
        LL l,r;
        while(~scanf("%lld%lld",&l,&r))
        {
            if(l==0&&r==0)break;
            printf("%lld
    ",xjhz(r)-xjhz(l-1));
        }
        return 0;
    }

    Integer’s Power

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 2291    Accepted Submission(s): 516


    Problem Description
    LMY and YY are number theory lovers. They like to find and solve some interesting number theory problems together. One day, they become interested in some special numbers, which can be expressed as powers of smaller numbers.

    For example, 9=3^2, 64=2^6, 1000=10^3 …

    For a given positive integer y, if we can find a largest integer k and a smallest positive integer x, such that x^k=y, then the power of y is regarded as k.
    It is very easy to find the power of an integer. For example:

    The power of 9 is 2.
    The power of 64 is 6.
    The power of 1000 is 3.
    The power of 99 is 1.
    The power of 1 does not exist.

    But YY wants to calculate the sum of the power of the integers from a to b. It seems not easy. Can you help him?
     
    Input
    The input consists of multiple test cases.
    For each test case, there is one line containing two integers a and b. (2<=a<=b<=10^18)

    End of input is indicated by a line containing two zeros.
     
    Output
    For each test case, output the sum of the power of the integers from a to b.
     
    Sample Input
    2 10 248832 248832 0 0
     
    Sample Output
    13 5
     
    Source
  • 相关阅读:
    DEDE调用当前文档中TAG标签利于内页优化提高收录量
    DEDE搜索结果将按点击排序展现方式的修改方法
    win 03 系统 IIS无法解析PHP之解决办法
    【原创】广告调用类,支持Flash调用
    中英文语言转换类
    PHP 获取内网用户MAC地址(WINDOWS/linux)解决方案
    DEDE删除文章怎么同时也删除附件,DEDE删除文章同时删除附件
    windows 2003下配置php环境
    When is a Test not a Unit Test?
    IBM WebSphere Commerce Front_dev
  • 原文地址:https://www.cnblogs.com/jhz033/p/7491780.html
Copyright © 2020-2023  润新知