• hdu 3706 Second My Problem First 单调队列


    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3706

    Second My Problem First

    Time Limit: 12000/4000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)



    Problem Description
    Give you three integers n, A and B. 
    Then we define Si = Ai mod B and Ti = Min{ Sk | i-A <= k <= i, k >= 1}
    Your task is to calculate the product of Ti (1 <= i <= n) mod B.
     
    Input
    Each line will contain three integers n(1 <= n <= 107),A and B(1 <= A, B <= 231-1). 
    Process to end of file.
     
    Output
    For each case, output the answer in a single line.
     
    Sample Input
    1 2 3 2 3 4 3 4 5 4 5 6 5 6 7
     
    Sample Output
    2 3 4 5 6
     
    Author
    WhereIsHeroFrom@HDU
     
    Source
     
    单调队列简单题;
    卡内存,list过不了,deque,G++过的;
    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<iostream>
    #include<cstdio>
    #include<cmath>
    #include<string>
    #include<queue>
    #include<algorithm>
    #include<stack>
    #include<cstring>
    #include<vector>
    #include<list>
    #include<set>
    #include<map>
    using namespace std;
    #define ll long long
    #define pi (4*atan(1.0))
    #define eps 1e-14
    #define bug(x)  cout<<"bug"<<x<<endl;
    const int N=1e7+10,M=4e6+10,inf=2147483647;
    const ll INF=1e18+10,mod=1e9+7;
    ///   数组大小
    int d[N];
    ll num[N];
    int main()
    {
        ll n,a,b;
        while(~scanf("%lld%lld%lld",&n,&a,&b))
        {
            ll ans=1,base=a%b;
            int s=0,e=0;
            for(int i=1;i<=n;i++,base=(base*a)%b)
            {
                num[i]=base;
                while(s<e&&d[s]<i-a)s++;
                while(e>s&&num[d[e]]>=num[i])e--;
                d[++e]=i;
                //cout<<num[d[s+1]]<<" "<<endl;
                ans=ans*(num[d[s+1]])%b;
            }
            printf("%lld
    ",ans);
        }
        return 0;
    }
  • 相关阅读:
    高斯消元法求逆矩阵
    二分法
    Boost库
    sorts
    排序算法_HeapSort
    粒子系统之概述_20140101
    新年祝福!_20140101
    思维_逆向的魅力2_20131229
    思维_逆向的魅力_20131229
    编码能力的提升?_20131228
  • 原文地址:https://www.cnblogs.com/jhz033/p/6666204.html
Copyright © 2020-2023  润新知