• poj 2478 Farey Sequence 欧拉函数前缀和


    Farey Sequence
    Time Limit: 1000MS   Memory Limit: 65536K
         

    Description

    The Farey Sequence Fn for any integer n with n >= 2 is the set of irreducible rational numbers a/b with 0 < a < b <= n and gcd(a,b) = 1 arranged in increasing order. The first few are
    F2 = {1/2}
    F3 = {1/3, 1/2, 2/3}
    F4 = {1/4, 1/3, 1/2, 2/3, 3/4}
    F5 = {1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5}

    You task is to calculate the number of terms in the Farey sequence Fn.

    Input

    There are several test cases. Each test case has only one line, which contains a positive integer n (2 <= n <= 106). There are no blank lines between cases. A line with a single 0 terminates the input.

    Output

    For each test case, you should output one line, which contains N(n) ---- the number of terms in the Farey sequence Fn.

    Sample Input

    2
    3
    4
    5
    0

    Sample Output

    1
    3
    5
    9

    Source

    POJ Contest,Author:Mathematica@ZSU

    #include<iostream>
    #include<cstring>
    #include<cstdio>
    using namespace std;
    #define ll long long
    #define esp 1e-13
    const int N=1e3+10,M=1e6+1000,inf=1e9+10,mod=1000000007;
    ll p[M],ji;
    bool vis[M];
    ll phi[M];
    ll sum[M];
    void get_eular(int n)
    {
        ji = 0;
        memset(vis, true, sizeof(vis));
        for(int i = 2; i <= n; i++)
        {
            if(vis[i])
            {
                p[ji ++] = i;
                phi[i] = i - 1;
            }
            for(int j = 0; j < ji && i * p[j] <= n; j++)
            {
                vis[i * p[j]] = false;
                if(i % p[j] == 0)
                {
                    phi[i * p[j]] = phi[i] * p[j];
                    break;
                }
                else
                phi[i * p[j]] = phi[i] * phi[p[j]];
            }
        }
    }
    int main()
    {
        int x,i;
        get_eular(M);
        memset(sum,0,sizeof(sum));
        for(i=1;i<=1e6;i++)
        sum[i]=sum[i-1]+phi[i];
        while(~scanf("%d",&x))
        {
            if(!x)break;
            printf("%lld
    ",sum[x]);
        }
        return 0;
    }
  • 相关阅读:
    React-Hooks
    RC-Select 学习笔记
    React Strict Mode
    CSSMotion VS animation in Angular
    jquery中has方法
    jquery中对于extend方法的使用
    一篇对于在jquery中使用jsonp技术介绍
    对于table元素的总结
    css3布局相关样式
    移动端去掉按钮点击热区
  • 原文地址:https://www.cnblogs.com/jhz033/p/5752484.html
Copyright © 2020-2023  润新知