• poj 1050 To the Max 最大子矩阵和 经典dp


    To the Max
     

    Description

    Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle. 
    As an example, the maximal sub-rectangle of the array: 

    0 -2 -7 0 
    9 2 -6 2 
    -4 1 -4 1 
    -1 8 0 -2 
    is in the lower left corner: 

    9 2 
    -4 1 
    -1 8 
    and has a sum of 15. 

    Input

    The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].

    Output

    Output the sum of the maximal sub-rectangle.

    Sample Input

    4
    0 -2 -7 0 9 2 -6 2
    -4 1 -4  1 -1
    
    8  0 -2

    Sample Output

    15

    Source

    思路:经典dp(yan 教的)
    #include<iostream>
    #include<cstdio>
    #include<cmath>
    #include<string>
    #include<queue>
    #include<algorithm>
    #include<stack>
    #include<cstring>
    #include<vector>
    #include<list>
    #include<set>
    #include<map>
    using namespace std;
    #define ll __int64
    #define mod 1000000007
    #define pi (4*atan(1.0))
    const int N=1e3+10,M=1e6+10,inf=1e9+10;
    int a[N][N];
    int sum[N][N];
    int num[N];
    int main()
    {
        int x,y,z,i,t;
        while(~scanf("%d",&x))
        {
            memset(sum,0,sizeof(sum));
            for(i=1;i<=x;i++)
            for(t=1;t<=x;t++)
            scanf("%d",&a[i][t]);
            for(i=1;i<=x;i++)
            for(t=1;t<=x;t++)
            sum[t][i]=sum[t-1][i]+a[t][i];
            int maxx=-inf;
            for(i=1;i<=x;i++)
            {
                for(t=i;t<=x;t++)
                {
                    for(int j=1;j<=x;j++)
                    num[j]=sum[t][j]-sum[i-1][j];
                    int sum=0;
                    for(int j=1;j<=x;j++)
                    {
                        sum+=num[j];
                        maxx=max(maxx,sum);
                        if(sum<0)
                        sum=0;
                    }
                }
            }
            printf("%d
    ",maxx);
        }
        return 0;
    }
     
  • 相关阅读:
    asp.net性能的技巧
    『笔记』数学数论(二)
    『笔记』数学数论(五)
    『笔记』数学数论(一)
    『笔记』数学数论(四)
    『笔记』分块与块状数组
    『笔记』矩阵
    『题解』CF28A Bender Problem
    『笔记』数学数论(七)
    『笔记』数学数论(三)
  • 原文地址:https://www.cnblogs.com/jhz033/p/5604310.html
Copyright © 2020-2023  润新知