How many integers can you find
Time Limit: 12000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Problem Description
Now you get a number N, and a M-integers set, you should find out how many integers which are small than N, that they can divided exactly by any integers in the set. For example, N=12, and M-integer set is {2,3}, so there is another set {2,3,4,6,8,9,10}, all the integers of the set can be divided exactly by 2 or 3. As a result, you just output the number 7.
Input
There are a lot of cases. For each case, the first line contains two integers N and M. The follow line contains the M integers, and all of them are different from each other. 0<N<2^31,0<M<=10, and the M integer are non-negative and won’t exceed 20.
Output
For each case, output the number.
Sample Input
12 2
2 3
Sample Output
7
Author
wangye
Source
思路:最简单的容斥,注意下可能输入0;奇加偶减
比如12 2
2 3
ans=11/2+11/3-11/6;
#include<iostream> #include<cstdio> #include<cmath> #include<string> #include<queue> #include<algorithm> #include<stack> #include<cstring> #include<vector> #include<list> #include<set> #include<map> using namespace std; #define ll __int64 #define mod 1000000007 #define inf 999999999 //#pragma comment(linker, "/STACK:102400000,102400000") int scan() { int res = 0 , ch ; while( !( ( ch = getchar() ) >= '0' && ch <= '9' ) ) { if( ch == EOF ) return 1 << 30 ; } res = ch - '0' ; while( ( ch = getchar() ) >= '0' && ch <= '9' ) res = res * 10 + ( ch - '0' ) ; return res ; } ll a[110]; ll ji; ll ans,x,y; ll gcd(ll x,ll y) { return y==0?x:gcd(y,x%y); } void dfs(ll lcm,ll pos,ll step) { if(lcm>x) return; if(pos==ji) { if(step==0) return; if(step&1) ans+=x/lcm; else ans-=x/lcm; return; } dfs(lcm,pos+1,step); dfs(lcm/gcd(a[pos],lcm)*a[pos],pos+1,step+1); } int main() { ll z,i,t; while(~scanf("%I64d%I64d",&x,&y)) { x--; ji=0; for(i=0;i<y;i++) { scanf("%I64d",&z); if(z==0)continue; a[ji++]=z; } ans=0; dfs(1,0,0); printf("%I64d ",ans); } return 0; }