C. Line
time limit per test
1 secondmemory limit per test
256 megabytesinput
standard inputoutput
standard outputA line on the plane is described by an equation Ax + By + C = 0. You are to find any point on this line, whose coordinates are integer numbers from - 5·1018 to 5·1018 inclusive, or to find out that such points do not exist.
Input
The first line contains three integers A, B and C ( - 2·109 ≤ A, B, C ≤ 2·109) — corresponding coefficients of the line equation. It is guaranteed that A2 + B2 > 0.
Output
If the required point exists, output its coordinates, otherwise output -1.
Examples
input
2 5 3
output
6 -3
思路:简单的扩展欧几里德,就是b==0的情况小心点;
#include<iostream> #include<cstdio> #include<cmath> #include<string> #include<queue> #include<algorithm> #include<stack> #include<cstring> #include<vector> #include<list> #include<set> #include<map> #define true ture #define false flase using namespace std; #define ll __int64 #define inf 0xfffffff int scan() { int res = 0 , ch ; while( !( ( ch = getchar() ) >= '0' && ch <= '9' ) ) { if( ch == EOF ) return 1 << 30 ; } res = ch - '0' ; while( ( ch = getchar() ) >= '0' && ch <= '9' ) res = res * 10 + ( ch - '0' ) ; return res ; } ll gcd(ll x,ll y) { return x%y==0?y:gcd(y,x%y); } void extend_Euclid(ll a, ll b, ll &x, ll &y) { if(b == 0) { x = 1; y = 0; return; } extend_Euclid(b, a % b, x, y); ll tmp = x; x = y; y = tmp - (a / b) * y; } int main() { ll a,b,c,x,y; cin>>a>>b>>c; c=-c; if(b==0) { if(c%a==0) { cout<<c/a<<" 0"<<endl; } else cout<<"-1"<<endl; return 0; } ll gg=gcd(a,b); if(c%gg==0) { extend_Euclid(a,b,x,y); cout<<c/gg*x<<" "<<c/gg*y<<endl; } else cout<<"-1"<<endl; return 0; }