内存是用来存储数据与程序的,对我们写程序来说非常重要。所以内存对程序来说几乎是本质需求。越简单的程序需要越少的内存,而越庞大越复杂的程序需要更多的内存。
注意:在嵌入式系统中有ROM和RAM两类内存,程序被固化进ROM,变量和堆栈设在RAM中,用const定义的常量也会被放入ROM中,用const定义常量可以节省空间,避免不必要的内存分配
内存管理是我们写程序时很重要的话题。我们以前学过的了解过的很多编程的关键其实都是为了内存,譬如说数据结构(数据结构是研究数据如何组织的,数据是放在内存中的)和算法(算法是为了用更优秀的更有效的方法来加工数据,既然和数据有关就离不开内存)。
操作系统掌管所有的硬件内存,因为内存很大,所以操作系统把内存分成1个1个的页面(其实就是一块,一般是4KB),然后以页面为单位来管理。页面内用更细小的方式来以字节为单位管理。操作系统内存管理的原理非常麻烦、非常复杂、非常不人性化。那么对我们这些使用操作系统的人来说,其实不需要了解这些细节。操作系统给我们提供了内存管理的一些接口,我们只需要用API即可管理内存。C语言中编译器帮我们管理直接的内存地址,我们都是通过编译器提供的变量名等来访问内存的,操作系统下如果需要大块内存,可以通过API(malloc free)来访问系统内存。裸机程序中需要大块的内存需要自己来定义数组等来解决。C++语言:C++语言对内存的使用进一步封装。我们可以用new来创建对象(其实就是为对象分配内存),然后使用完了用delete来删除对象(其实就是释放内存)。所以C++语言对内存的管理比C要高级一些,容易一些。但是C++中内存的管理还是靠程序员自己来做。如果程序员new了一个对象,但是用完了忘记delete就会造成这个对象占用的内存不能释放,这就是所谓的内存泄漏。
内存空间逻辑组织
int a = 0; //全局初始化区
char *p1; //全局未初始化区
main()
{
int b; //栈
char s[] = "abc"; //栈
char *p2; //栈
char *p3 = "123456"; //123456在文字常量区,p3在栈上。(如何得到文字常量地址?)
static int c =0; //全局(静态)数据区
p1 = (char *)malloc(10);
p2 = (char *)malloc(20); //分配得来的10和20字节的区域就在堆区。(如何得到?)
strcpy(p1, "123456"); //123456放在常量区,编译器可能会将它与p3所指向的"123456"优化成一个地方。
}
堆与栈的区别:
二、堆和栈的理论知识
1、申请方式
stack:由系统自动分配。 例如,声明在函数中一个局部变量 int b; 系统自动在栈中为b开辟空间 ;
heap:需要程序员自己申请,并指明大小,在c中malloc函数
详情请看(http://www.cnblogs.com/jhmu0613/p/6915437.html)
如:
p1 = (char *)malloc(10);
在C++中用new运算符
如:
p2 = new char[10];
但是注意p1、p2本身是在栈中的。
2、申请后系统的响应
栈:只要栈的剩余空间大于所申请空间,系统将为程序提供内存,否则将报异常提示栈溢
出。
堆:首先应该知道操作系统有一个记录空闲内存地址的链表,当系统收到程序的申请时,会遍历该链表,寻找第一个空间大于所申请空间的堆结点,然后将该结点从空闲结点链表中删除,并将该结点的空间分配给程序,另外,对于大多数系统,会在这块内存空间中的首地址处记录本次分配的大小,这样,代码中的delete语句才能正确的释放本内存空间。另外,由于找到的堆结点的大小不一定正好等于申请的大小,系统会自动的将多余的那部分重新放入空闲链表中。
3、申请大小的限制
栈:在Windows下,栈是向低地址扩展的数据结构,是一块连续的内存的区域。这句话的意思是栈顶的地址和栈的最大容量是系统预先规定好的,在WINDOWS下,栈的大小是2M(也有的说是1M,总之是一个编译时就确定的常数),如果申请的空间超过栈的剩余空间时,将提示overflow。因此,能从栈获得的空间较小。
堆:堆是向高地址扩展的数据结构,是不连续的内存区域。这是由于系统是用链表来存储的空闲内存地址的,自然是不连续的,而链表的遍历方向是由低地址向高地址。堆的大小受限于计算机系统中有效的虚拟内存。由此可见,堆获得的空间比较灵活,也比较大。
4、申请效率的比较:
栈由系统自动分配,速度较快。但程序员是无法控制的。
堆是由new分配的内存,一般速度比较慢,而且容易产生内存碎片,不过用起来最方便.
另外,在WINDOWS下,最好的方式是用VirtualAlloc分配内存,他不是在堆,也不是在栈是直接在进程的地址空间中保留一块内存,虽然用起来最不方便。但是速度快,也最灵活。
5、堆和栈中的存储内容
栈:在函数调用时,第一个进栈的是主函数中后的下一条指令(函数调用语句的下一条可执行语句)的地址,然后是函数的各个参数,在大多数的C编译器中,参数是由右往左入栈的,然后是函数中的局部变量。注意静态变量是不入栈的。当本次函数调用结束后,局部变量先出栈,然后是参数,最后栈顶指针指向最开始存的地址,也就是主函数中的下一条指令,程序由该点继续运行。
堆:一般是在堆的头部用一个字节存放堆的大小。堆中的具体内容由程序员安排。
6、存取效率的比较
char s1[] = "aaaaaaaaaaaaaaa";
char *s2 = "bbbbbbbbbbbbbbbbb";
aaaaaaaaaaa是在运行时刻赋值的;
而bbbbbbbbbbb是在编译时就确定的;
但是,在以后的存取中,在栈上的数组比指针所指向的字符串(例如堆)快。
比如:
#include
void main()
{
char a = 1;
char c[] = "1234567890";
char *p ="1234567890";
a = c[1];
a = p[1];
return;
}
对应的汇编代码
10: a = c[1];
00401067 8A 4D F1 mov cl,byte ptr [ebp-0Fh]
0040106A 88 4D FC mov byte ptr [ebp-4],cl
11: a = p[1];
0040106D 8B 55 EC mov edx,dword ptr [ebp-14h]
00401070 8A 42 01 mov al,byte ptr [edx+1]
00401073 88 45 FC mov byte ptr [ebp-4],al
第一种在读取时直接就把字符串中的元素读到寄存器cl中,而第二种则要先把指针值读到
edx中,再根据edx读取字符,显然慢了。
7、是否产生碎片。
对于堆来讲,频繁的malloc/free(new/delete)势必会造成内存空间的不连续,从而造成大量的碎片,使程序效率降低(虽然程序在退出后操作系统会对内存进行回收管理)。对于栈来讲,则不会存在这个问题。
变量的作用域:
C++变量根据定义的位置的不同的生命周期,具有不同的作用域,作用域可分为6种:
全局作用域,局部作用域,语句作用域,类作用域,命名空间作用域和文件作用域。
从作用域看:
1>全局变量具有全局作用域。全局变量只需在一个源文件中定义,就可以作用于所有的源文件。当然,其他不包含全局变量定义的源文件需要用extern 关键字再次声明这个全局变量。
2>静态局部变量具有局部作用域,它只被初始化一次,自从第一次被初始化直到程序运行结束都一直存在,它和全局变量的区别在于全局变量对所有的函数都是可见的,而静态局部变量只对定义自己的函数体始终可见。
3>局部变量也只有局部作用域,它是自动对象(auto),它在程序运行期间不是一直存在,而是只在函数执行期间存在,函数的一次调用执行结束后,变量被撤销,其所占用的内存也被收回。
4>静态全局变量也具有全局作用域,它与全局变量的区别在于如果程序包含多个文件的话,它作用于定义它的文件里,不能作用到其它文件里,即被static关键字修饰过的变量具有文件作用域。这样即使两个不同的源文件都定义了相同名字的静态全局变量,它们也是不同的变量。
2.从分配内存空间看:
1>全局变量,静态局部变量,静态全局变量都在静态存储区分配空间,而局部变量在栈里分配空间
2>全局变量本身就是静态存储方式, 静态全局变量当然也是静态存储方式。这两者在存储方式上并无不同。这两者的区别虽在于非静态全局变量的作用域是整个源程序,当一个源程序由多个源文件组成时,非静态的全局变量在各个源文件中都是有效的。而静态全局变量则限制了其作用域,即只在定义该变量的源文件内有效,在同一源程序的其它源文件中不能使用它。由于静态全局变量的作用域局限于一个源文件内,只能为该源文件内的函数公用,因此可以避免在其它源文件中引起错误。
指针与数组的对比
c程序中,指针和数组在不少地方可以相互替换着用,让人产生一种错觉,以为两者是等价的数组要么在静态存储区被创建(如全局数组),要么在栈上被创建。数组名对应着(而不是指向)一块内存,其地址与容量在生命周期内保持不变,只有数组的内容可以改变指针可以随时指向任意类型的内存块,它的特征是“可变”,所以我们常用指针来操作动态内存。指针远比数组灵活,但也更危险。
修改内容
字符数组a的容量是6个字符,其内容为hello。a的内容可以修改,例如a[0]='x'.指针p指向常量字符串“world”(位于静态存储区,内容为world),常量字符串的内容是不可以被修改的。从语法上看,编译器并不觉得语句p[0]='x'有什么不妥,但是该语句企图修改常量字符串的内容而导致运行错误;
#include <stdio.h>
int main()
{
char a[] = "hello";
a[0] = 'x'; //可以修改
printf("%s
", a);
char *p = "wrold";
p[0] = 'x'; //不可修改
printf("%s
", p);
return 0;
}
内容复制与比较
不能对数组名进行直接复制与比较。若想把数组a的内容复制给数组b,不能用语句 b = a,否则将产生编译错误。应该用标准库函数strcpy进行复制。同理,比较b和a的内容是否相同,应该用标准库函数strcmp进行比较
语句p = a并不能把a的内容复制指针p,而是把a的地址赋给了p。要想复制a的内容,可以先用库函数malloc为p申请一块容量为strlen(a)1个字符的内存,再用strcpy进行字符串复制。同理,语句if(p == a)比较的不是内容而是地址,应该用库函数strcmp来比较;
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
int main()
{
char a[] = "hello";
char b[10];
strcpy(b, a); //不能用b = a
int len = strlen(a);
char *p = (char *)malloc((len + 1) * sizeof(char));
strcpy(p, a);
if (strcmp(p, a) == 0) {
printf("p和a是相等的!
");
}
free(p);
return 0;
}
计算内存容量
用运算符sizeof可以计算出数组的容量(字节数)。sizeof(a)的值是12.指向p指向a,但是sizeof(p)的值却是4.这是因为sizeof(p)得到的是一个指针变量的字节数(32bit机器内存地址为32bit),相当于sizeof(char *),而不是p所指的内存容量。
注意当数组作为函数的参数进行传递时,该数组自动退化为同类型的指针。不论数组a的容量是多少,sizeof(a)始终等于sizeof(char *)
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
void funC(char *a);
int main()
{
char a[] = "hello";
char *p = a;
printf("%d
", sizeof(a)); // 6字节
printf("%d
", sizeof(p)); // 4字节
funC(a);
return 0;
}
void funC(char *a)
{
printf("%d
", sizeof(a)); // 4字节而不是6字节
}
指针参数是如何传递内存的
如果函数的参数是一个指针,不要指望用该指针去申请动态内存。示例中,Test函数的语句GetMemory(str, 200)并没有使str获得期望的内存,str依旧是NULL,为什么?
问题出在函数GetMemory中。编译器总是要为函数的每个参数制作临时副本,指针参数p的副本是_p,编译器使_p = p.如果函数体内的程序修改了_p的内容,就导致参数p的内容作相应的修改。这就是指针可以用作输出参数的原因。在本例中,_p申请了新的内存,只是把_p所指的内存地址改变了,但是p丝毫未变。所以函数GetMemory并不能输出任何东西。事实上,每执行一次GetMemory就会泄漏一块内存,因为没有用free释放内存;
我们可以用函数返回值来传递动态内存,这种方法更简单,见getMemory;
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
void GetMemory(char *p, int num)
{
p = (char*)malloc(sizeof(char) * num);
}
char* getMemory(char *p, int num)
{
p = (char *)malloc(sizeof(char) * num);
return p;
}
int main()
{
char *str = NULL;
str = getMemory(str, 200);
strcpy(str, "hello world!"); //运行错误
printf("%s", str);
free(str);
return 0;
}
注意:
用函数返回值来传递动态内存这种方法虽然好用,但是常常有人把return语句用错了。这里强调不要用return语句返回指向”栈内存“的指针,因为该内存在函数结束时自动消亡。
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
char* getArray(void)
{
char p[] = "hello world!";
return p; // 编译器提出警告
}
int main()
{
char *str = NULL;
str = getArray();
printf("%s
", str); // str指向的内容是垃圾
free(str);
return 0;
}
杜绝“野指针”
"野指针"不是NULL指针,是指向“垃圾”内存的指针。人们一般不会错用NULL指针,因为用if语句很容易判断。但是“野指针”是很危险的,if语句对它不起作用。“野指针”的成因主要有两种:
指针变量没有初始化。任何指针变量刚被创建时不会自动成为NULL指针,它的缺省值是随机的,它会乱指一气。所以,指针变量在创建的同时应该被初始化,要么将指针设置为NULL,要么让它指向合法的内存,例如:
char *p = NULL;
char *str = (char *)malloc(sizeof(char) * 100);
内存耗尽怎么办
如果在申请动态内存时找不到足够大的内存块,malloc函数将返回NULL指针,宣告内存申请失败。通常有三种方式处理“内存耗尽”问题
判断指针是否为NULL,如果是则马上用return语句终止本函数。例如:
char* getPoint()
{
char *p = malloc(sizeof(char) * 100);
if (p == NULL) {
return null;
}
}
判断指针是否为NULL,如果是则马上用exit(1)终止整个程序的运行(我经常用也是推荐做法):
char* getPoint()
{
char *p = malloc(sizeof(char) * 100);
if (p == NULL) {
exit(1);
}
}
为new和malloc设置异常处理函数;