• hdu1003


    Max Sum

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 138410    Accepted Submission(s): 32144


    Problem Description
    Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
     
    Input
    The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
     
    Output
    For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
     
    Sample Input
    2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5
     
    Sample Output
    Case 1: 14 1 4 Case 2: 7 1 6
     
    Author
    Ignatius.L
    这题是一个经典dp问题,dp思想在于把问题分解成若干个子问题,在子问题最优的情况下得出最终最优结果,所以我们每一步都是建立在前一步是最优的基础之上的。所以解决dp问题,最基本的要在某种情景下,想到当前状态的最优情况是什么样的,最优后,接下来怎么办,不是最优的该怎么变成最优的。这就是我们的状态转移方程。
    对于本问题,首先明确,连续的子段! 和最大 ,一个数组给我们,第一个数肯定当前最大,毋庸置疑,那么遇到下一个数,怎么判断和是当前最大呢?我们遇到正数,那肯定直接加,因为加完肯定比不加大,如果是负数呢?加上去,原来的和肯定变小,但不加怎么办呢?
    基于以上问题 可以得出状态方程 dp[i]=d[i-1]+a[i]>a[i]?dp[i-1]+a[i]:a[i]  (dp[i]表示当前i下最大的子段和,a[i]是需要处理的数字)什么意思呢,当前数字加到之前的和上面后,如果大于当前数字,那么就执行加的操作,如果小于当前数字,就把当前和最大值dp[i]设置为a[i],可能有人问为什么要设置为a[i]。。记住,如果a[i]你不加上去,意味着你需要从新开始累加和了,我们要求是连续的子段和!!!
    利用dp数组的代码:
     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cstdlib>
     4 //#define LOCAL   
     5 using namespace std;
     6 
     7 
     8 int main()
     9 {
    10 #ifdef LOCAL
    11 freopen("d:datain.txt","r",stdin);
    12 freopen("d:dataout.txt","w",stdout);
    13 #endif 
    14     int n;
    15     while(scanf("%d",&n)!=EOF)
    16     {
    17         int i,m;
    18         for(i =0 ; i< n;i++)
    19         {
    20             scanf("%d",&m);
    21             int dp[100000],a[100000];
    22             scanf("%d",&a[0]);
    23             dp[0] = a[0];  //当前最大
    24             for(int j = 1; j<m;j++)   //生成了dp状态数组了
    25             {
    26                 scanf("%d",&a[j]);
    27                 if(dp[j-1]+a[j]<a[j])      //状态转移方程
    28                     dp[j]=a[j];
    29                 else
    30                     dp[j]=dp[j-1]+a[j];
    31             }
    32             int Max,End;
    33             Max = dp[0];
    34             End = 0;
    35             for(int j = 1 ;j<m;j++)           //寻找区间
    36                 if(Max<dp[j])
    37                 {
    38                     End = j;
    39                     Max = dp[j];
    40                 }
    41             int Begin = End;
    42             int temp = 0;
    43             for(int j = End;j>=0;j--)
    44             {
    45                 temp +=a[j];
    46                 if(temp==dp[End])
    47                     Begin = j;
    48             }
    49             cout<<"Case "<<i+1<<":"<<endl<<Max<<" "<<Begin+1<<" "<<End+1<<endl;
    50             if(i<n-1)
    51                 cout<<endl;
    52         }
    53     }
    54     return 0;
    55 }

    简化后不带dp数组的,因为这题在dp问题中是比较简单的。

     1 //hdu 1003
     2 
     3 #include<stdio.h>
     4 int main()
     5 {
     6 
     7     int n;
     8     while(scanf("%d",&n)!=EOF)
     9     {
    10         for(int i = 0;i<n;i++)
    11         {
    12             int a;
    13             int Max  = -9999;
    14             int sum  = 0,m;
    15             int Begin=0,End=0,flag=0;
    16             scanf("%d",&m);
    17             scanf("%d",&a);
    18             Max = sum = a;
    19             for(int j = 1 ;j<m ;j++)
    20             {
    21                 scanf("%d",&a);
    22                 if(sum<0)
    23                 {
    24                     sum=a;
    25                     flag=j;
    26                 }
    27                 else
    28                 {
    29 
    30                     sum=sum+a;
    31                 }
    32                 if(Max<sum)
    33                 {
    34                     Max = sum ;
    35                     Begin =flag;
    36                     End = j;
    37                 }
    38             }
    39             printf("Case %d:
    %d %d %d
    ",i+1,Max,Begin+1,End+1);
    40             if(i<n-1)
    41                 printf("
    ");
    42         }
    43 
    44     }
    45     return 0;
    46 }
  • 相关阅读:
    Speech_recognition
    Unity3D
    Kinect
    matlab
    debian install
    menu.lst
    RStudio
    System.BadImageFormatException
    C语言期末复习划重点啦!赶上复习的末班车,祝你期末考试不挂科!
    程序员的中年危机:不是物质的匮乏,而是身份的焦虑
  • 原文地址:https://www.cnblogs.com/jhldreams/p/3786478.html
Copyright © 2020-2023  润新知