Max Sum
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 138410 Accepted Submission(s): 32144
Problem Description
Given
a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max
sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in
this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The
first line of the input contains an integer T(1<=T<=20) which
means the number of test cases. Then T lines follow, each line starts
with a number N(1<=N<=100000), then N integers followed(all the
integers are between -1000 and 1000).
Output
For
each test case, you should output two lines. The first line is "Case
#:", # means the number of the test case. The second line contains three
integers, the Max Sum in the sequence, the start position of the
sub-sequence, the end position of the sub-sequence. If there are more
than one result, output the first one. Output a blank line between two
cases.
Sample Input
2
5 6 -1 5 4 -7
7 0 6 -1 1 -6 7 -5
Sample Output
Case 1:
14 1 4
Case 2:
7 1 6
Author
Ignatius.L
这题是一个经典dp问题,dp思想在于把问题分解成若干个子问题,在子问题最优的情况下得出最终最优结果,所以我们每一步都是建立在前一步是最优的基础之上的。所以解决dp问题,最基本的要在某种情景下,想到当前状态的最优情况是什么样的,最优后,接下来怎么办,不是最优的该怎么变成最优的。这就是我们的状态转移方程。
对于本问题,首先明确,连续的子段! 和最大 ,一个数组给我们,第一个数肯定当前最大,毋庸置疑,那么遇到下一个数,怎么判断和是当前最大呢?我们遇到正数,那肯定直接加,因为加完肯定比不加大,如果是负数呢?加上去,原来的和肯定变小,但不加怎么办呢?
基于以上问题 可以得出状态方程 dp[i]=d[i-1]+a[i]>a[i]?dp[i-1]+a[i]:a[i] (dp[i]表示当前i下最大的子段和,a[i]是需要处理的数字)什么意思呢,当前数字加到之前的和上面后,如果大于当前数字,那么就执行加的操作,如果小于当前数字,就把当前和最大值dp[i]设置为a[i],可能有人问为什么要设置为a[i]。。记住,如果a[i]你不加上去,意味着你需要从新开始累加和了,我们要求是连续的子段和!!!
利用dp数组的代码:
1 #include<iostream> 2 #include<cstdio> 3 #include<cstdlib> 4 //#define LOCAL 5 using namespace std; 6 7 8 int main() 9 { 10 #ifdef LOCAL 11 freopen("d:datain.txt","r",stdin); 12 freopen("d:dataout.txt","w",stdout); 13 #endif 14 int n; 15 while(scanf("%d",&n)!=EOF) 16 { 17 int i,m; 18 for(i =0 ; i< n;i++) 19 { 20 scanf("%d",&m); 21 int dp[100000],a[100000]; 22 scanf("%d",&a[0]); 23 dp[0] = a[0]; //当前最大 24 for(int j = 1; j<m;j++) //生成了dp状态数组了 25 { 26 scanf("%d",&a[j]); 27 if(dp[j-1]+a[j]<a[j]) //状态转移方程 28 dp[j]=a[j]; 29 else 30 dp[j]=dp[j-1]+a[j]; 31 } 32 int Max,End; 33 Max = dp[0]; 34 End = 0; 35 for(int j = 1 ;j<m;j++) //寻找区间 36 if(Max<dp[j]) 37 { 38 End = j; 39 Max = dp[j]; 40 } 41 int Begin = End; 42 int temp = 0; 43 for(int j = End;j>=0;j--) 44 { 45 temp +=a[j]; 46 if(temp==dp[End]) 47 Begin = j; 48 } 49 cout<<"Case "<<i+1<<":"<<endl<<Max<<" "<<Begin+1<<" "<<End+1<<endl; 50 if(i<n-1) 51 cout<<endl; 52 } 53 } 54 return 0; 55 }
简化后不带dp数组的,因为这题在dp问题中是比较简单的。
1 //hdu 1003 2 3 #include<stdio.h> 4 int main() 5 { 6 7 int n; 8 while(scanf("%d",&n)!=EOF) 9 { 10 for(int i = 0;i<n;i++) 11 { 12 int a; 13 int Max = -9999; 14 int sum = 0,m; 15 int Begin=0,End=0,flag=0; 16 scanf("%d",&m); 17 scanf("%d",&a); 18 Max = sum = a; 19 for(int j = 1 ;j<m ;j++) 20 { 21 scanf("%d",&a); 22 if(sum<0) 23 { 24 sum=a; 25 flag=j; 26 } 27 else 28 { 29 30 sum=sum+a; 31 } 32 if(Max<sum) 33 { 34 Max = sum ; 35 Begin =flag; 36 End = j; 37 } 38 } 39 printf("Case %d: %d %d %d ",i+1,Max,Begin+1,End+1); 40 if(i<n-1) 41 printf(" "); 42 } 43 44 } 45 return 0; 46 }