题意:给n*m的地图,在地图的点上走,(n+1)*(m+1)个点,两种操作:往下走D和往右走R。现在要从左上角走到右下角,给定两个操作串,问包含这两个串的走法总共有多少种。
做法:用这两个串构建自动机,然后只要在自动机上走n+m+1步就好了。就像一个递推,dp[x][y][i][cur]表示在i状态到达x,y坐标时走过的串的状态为cur时的总方案数
我和我的小伙伴们都弱爆了。
为什么没写过就不敢写。
这几天看自动机应该也看会了吧。
#define mod 1000000007 int f[105][105][205][4] ; int hash[256]; int n,m; struct ACmation { static const int UNDEF = 0; static const int MAXN = 10240; static const int CHARSET = 2; int end; int count[MAXN]; int fail[MAXN]; int ch[MAXN][CHARSET]; void init() { count[0] = UNDEF; fill(ch[0], ch[0] + CHARSET, -1); end = 1; } void add(int m, const int* s, int t) { int p = 0; for (int i = 0; i < m; ++i) { if (ch[p][*s] == -1) { count[end] = UNDEF; fill(ch[end], ch[end] + CHARSET, -1); ch[p][*s] = end++; } p = ch[p][*s]; ++s; } count[p] |= t; } void build() { queue<int> bfs; fail[0] = 0; for (int i = 0; i < CHARSET; ++i) { if (ch[0][i] != -1) { fail[ch[0][i]] = 0; bfs.push(ch[0][i]); } else { ch[0][i] = 0; } } while (!bfs.empty()) { int p = bfs.front(); count[p] |= count[fail[p]]; bfs.pop(); for (int i = 0; i < CHARSET; ++i) { if (ch[p][i] != -1) { fail[ch[p][i]] = ch[fail[p]][i]; bfs.push(ch[p][i]); } else { ch[p][i] = ch[fail[p]][i]; } } } } int solve() { memset(f,0,sizeof(f)); f[0][0][count[0]][0] = 1 ; int tmp ; for(int x = 0 ; x <= n ; x ++ ) { for(int y = 0 ; y <= m; y ++ ) { for(int i = 0 ; i < end; i ++ ) { for(int cur = 0 ; cur < 4; cur ++ ) { //printf("count[i] = %d ",count[i]); if(x + 1 <= n ) { tmp = cur | count[ch[i][0]]; f[x+1][y][ch[i][0]][tmp] = (f[x][y][i][cur] + f[x+1][y][ch[i][0]][tmp] ) % mod; // printf("%d %d %d %d %d ",x+1,y,ch[i][0],tmp,f[x+1][y][ch[i][0]][tmp]); } if(y + 1 <= m ) { tmp = cur | count[ch[i][1]]; f[x][y+1][ch[i][1]][tmp] = (f[x][y][i][cur] + f[x][y+1][ch[i][1]][tmp] ) % mod; //printf("%d %d %d %d %d ",x,y+1,ch[i][0],tmp,f[x][y+1][ch[i][0]][tmp]); } } } } } int res; res = 0 ; for(int i = 0 ; i < end ; i ++ ) { res = (f[n][m][i][3] + res) % mod ; } return res % mod ; } } ac; char str[106]; int len ; int te[106]; int main() { int cas; memset(hash,-1,sizeof(hash)); hash['D'] = 0 ; hash['R'] = 1 ; scanf("%d",&cas); while(cas -- ) { scanf("%d%d",&m,&n); ac.init(); for(int k = 0; k < 2; k ++ ) { scanf("%s",str); len = strlen(str); for(int i = 0; i < len ; i ++ ) te[i] = hash[str[i]]; ac.add(len,te,1<<k); } ac.build(); int ans ; ans = ac.solve(); printf("%d ",ans); } return 0; }