• 【TensorFlow】理解tf.nn.conv2d方法 ( 附代码详解注释 )


    最近在研究学习TensorFlow,在做识别手写数字的demo时,遇到了tf.nn.conv2d这个方法,查阅了官网的API 发现讲得比较简略,还是没理解。google了一下,参考了网上一些朋友写得博客,结合自己的理解,差不多整明白了。

    方法定义
    tf.nn.conv2d (input, filter, strides, padding, use_cudnn_on_gpu=None, data_format=None, name=None)

    参数:
    **input : ** 输入的要做卷积的图片,要求为一个张量,shape为 [ batch, in_height, in_weight, in_channel ],其中batch为图片的数量,in_height 为图片高度,in_weight 为图片宽度,in_channel 为图片的通道数,灰度图该值为1,彩色图为3。(也可以用其它值,但是具体含义不是很理解)
    filter: 卷积核,要求也是一个张量,shape为 [ filter_height, filter_weight, in_channel, out_channels ],其中 filter_height 为卷积核高度,filter_weight 为卷积核宽度,in_channel 是图像通道数 ,和 input 的 in_channel 要保持一致,out_channel 是卷积核数量。
    strides: 卷积时在图像每一维的步长,这是一个一维的向量,[ 1, strides, strides, 1],第一位和最后一位固定必须是1
    padding: string类型,值为“SAME” 和 “VALID”,表示的是卷积的形式,是否考虑边界。"SAME"是考虑边界,不足的时候用0去填充周围,"VALID"则不考虑
    use_cudnn_on_gpu: bool类型,是否使用cudnn加速,默认为true
    具体实现
    import tensorflow as tf
    # case 1
    # 输入是1张 3*3 大小的图片,图像通道数是5,卷积核是 1*1 大小,数量是1
    # 步长是[1,1,1,1]最后得到一个 3*3 的feature map
    # 1张图最后输出就是一个 shape为[1,3,3,1] 的张量
    input = tf.Variable(tf.random_normal([1,3,3,5]))
    filter = tf.Variable(tf.random_normal([1,1,5,1]))
    op1 = tf.nn.conv2d(input, filter, strides=[1,1,1,1], padding='SAME')


    # case 2
    # 输入是1张 3*3 大小的图片,图像通道数是5,卷积核是 2*2 大小,数量是1
    # 步长是[1,1,1,1]最后得到一个 3*3 的feature map
    # 1张图最后输出就是一个 shape为[1,3,3,1] 的张量
    input = tf.Variable(tf.random_normal([1,3,3,5]))
    filter = tf.Variable(tf.random_normal([2,2,5,1]))
    op2 = tf.nn.conv2d(input, filter, strides=[1,1,1,1], padding='SAME')

    # case 3
    # 输入是1张 3*3 大小的图片,图像通道数是5,卷积核是 3*3 大小,数量是1
    # 步长是[1,1,1,1]最后得到一个 1*1 的feature map (不考虑边界)
    # 1张图最后输出就是一个 shape为[1,1,1,1] 的张量
    input = tf.Variable(tf.random_normal([1,3,3,5]))
    filter = tf.Variable(tf.random_normal([3,3,5,1]))
    op3 = tf.nn.conv2d(input, filter, strides=[1, 1, 1, 1], padding='VALID')

    # case 4
    # 输入是1张 5*5 大小的图片,图像通道数是5,卷积核是 3*3 大小,数量是1
    # 步长是[1,1,1,1]最后得到一个 3*3 的feature map (不考虑边界)
    # 1张图最后输出就是一个 shape为[1,3,3,1] 的张量
    input = tf.Variable(tf.random_normal([1,5,5,5]))
    filter = tf.Variable(tf.random_normal([3,3,5,1]))
    op4 = tf.nn.conv2d(input, filter, strides=[1, 1, 1, 1], padding='VALID')

    # case 5
    # 输入是1张 5*5 大小的图片,图像通道数是5,卷积核是 3*3 大小,数量是1
    # 步长是[1,1,1,1]最后得到一个 5*5 的feature map (考虑边界)
    # 1张图最后输出就是一个 shape为[1,5,5,1] 的张量
    input = tf.Variable(tf.random_normal([1,5,5,5]))
    filter = tf.Variable(tf.random_normal([3,3,5,1]))
    op5 = tf.nn.conv2d(input, filter, strides=[1, 1, 1, 1], padding='SAME')

    # case 6
    # 输入是1张 5*5 大小的图片,图像通道数是5,卷积核是 3*3 大小,数量是7
    # 步长是[1,1,1,1]最后得到一个 5*5 的feature map (考虑边界)
    # 1张图最后输出就是一个 shape为[1,5,5,7] 的张量
    input = tf.Variable(tf.random_normal([1,5,5,5]))
    filter = tf.Variable(tf.random_normal([3,3,5,7]))
    op6 = tf.nn.conv2d(input, filter, strides=[1, 1, 1, 1], padding='SAME')

    # case 7
    # 输入是1张 5*5 大小的图片,图像通道数是5,卷积核是 3*3 大小,数量是7
    # 步长是[1,2,2,1]最后得到7个 3*3 的feature map (考虑边界)
    # 1张图最后输出就是一个 shape为[1,3,3,7] 的张量
    input = tf.Variable(tf.random_normal([1,5,5,5]))
    filter = tf.Variable(tf.random_normal([3,3,5,7]))
    op7 = tf.nn.conv2d(input, filter, strides=[1, 2, 2, 1], padding='SAME')

    # case 8
    # 输入是10 张 5*5 大小的图片,图像通道数是5,卷积核是 3*3 大小,数量是7
    # 步长是[1,2,2,1]最后每张图得到7个 3*3 的feature map (考虑边界)
    # 10张图最后输出就是一个 shape为[10,3,3,7] 的张量
    input = tf.Variable(tf.random_normal([10,5,5,5]))
    filter = tf.Variable(tf.random_normal([3,3,5,7]))
    op8 = tf.nn.conv2d(input, filter, strides=[1, 2, 2, 1], padding='SAME')

    init = tf.initialize_all_variables()
    with tf.Session() as sess:
    sess.run(init)
    print('*' * 20 + ' op1 ' + '*' * 20)
    print(sess.run(op1))
    print('*' * 20 + ' op2 ' + '*' * 20)
    print(sess.run(op2))
    print('*' * 20 + ' op3 ' + '*' * 20)
    print(sess.run(op3))
    print('*' * 20 + ' op4 ' + '*' * 20)
    print(sess.run(op4))
    print('*' * 20 + ' op5 ' + '*' * 20)
    print(sess.run(op5))
    print('*' * 20 + ' op6 ' + '*' * 20)
    print(sess.run(op6))
    print('*' * 20 + ' op7 ' + '*' * 20)
    print(sess.run(op7))
    print('*' * 20 + ' op8 ' + '*' * 20)
    print(sess.run(op8))

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    # 运行结果

    ******************** op1 ********************
    [[[[ 0.78366613]
    [-0.11703026]
    [ 3.533338 ]]

    [[ 3.4455981 ]
    [-2.40102 ]
    [-1.3336506 ]]

    [[ 1.9816184 ]
    [-3.3166158 ]
    [ 2.0968733 ]]]]
    ******************** op2 ********************
    [[[[-4.429776 ]
    [ 4.1218996 ]
    [-4.1383405 ]]

    [[ 0.4804101 ]
    [ 1.3983132 ]
    [ 1.2663789 ]]

    [[-1.8450742 ]
    [-0.02915052]
    [-0.5696235 ]]]]
    ******************** op3 ********************
    [[[[-6.969367]]]]
    ******************** op4 ********************
    [[[[ -2.9217496 ]
    [ 4.4683943 ]
    [ 7.5761824 ]]

    [[-14.627491 ]
    [ -5.014709 ]
    [ -3.4593797 ]]

    [[ 0.45091882]
    [ 4.8827124 ]
    [ -9.658895 ]]]]
    ******************** op5 ********************
    [[[[-2.8486536 ]
    [ 1.3990458 ]
    [ 2.953944 ]
    [-6.007198 ]
    [ 5.089696 ]]

    [[-0.20283715]
    [ 2.4726171 ]
    [ 6.2137847 ]
    [-0.38609552]
    [-1.8869443 ]]

    [[ 7.7240233 ]
    [10.6962805 ]
    [-3.1667676 ]
    [-3.6487846 ]
    [-2.2908094 ]]

    [[-9.00223 ]
    [ 4.5111785 ]
    [ 2.5615098 ]
    [-5.8492236 ]
    [ 1.7734764 ]]

    [[ 2.3674765 ]
    [-5.9122458 ]
    [ 5.867611 ]
    [-0.50353 ]
    [-4.890904 ]]]]
    ******************** op6 ********************
    [[[[-4.06957626e+00 5.69651246e-01 2.97890633e-01 -5.08075190e+00
    2.76357365e+00 -7.34121323e+00 -2.09436584e+00]
    [-9.03515625e+00 -8.96854973e+00 -4.40316677e+00 -3.23745847e+00
    -3.56242275e+00 3.67262197e+00 2.59603453e+00]
    [ 1.25131302e+01 1.30267200e+01 2.25630283e+00 3.31285048e+00
    -1.00396938e+01 -9.06786323e-01 -7.20120049e+00]
    [-3.18641067e-01 -7.66135693e+00 5.02029419e+00 -1.65469778e+00
    -5.53000355e+00 -4.76842117e+00 4.98133230e+00]
    [ 3.68885136e+00 2.54145473e-01 -4.17096436e-01 1.20136106e+00
    -2.29291725e+00 6.98313904e+00 4.92819786e-01]]

    [[ 1.22962761e+01 3.85902214e+00 -2.91524696e+00 -6.89016438e+00
    3.35520816e+00 -1.85112596e+00 5.59113741e+00]
    [ 2.99087334e+00 4.42690086e+00 -3.34755349e+00 -7.41521478e-01
    3.65099478e+00 -2.84761238e+00 -2.74149513e+00]
    [-9.65088654e+00 -4.91817188e+00 3.82093906e+00 -5.72443676e+00
    1.43630829e+01 5.11133957e+00 -1.18163595e+01]
    [ 1.69606721e+00 -1.00837049e+01 9.65112305e+00 3.48559356e+00
    4.71356201e+00 -2.74463081e+00 -5.76961470e+00]
    [-5.11555862e+00 1.06215849e+01 1.97274566e+00 -1.66155469e+00
    5.40411043e+00 1.64753020e+00 -2.25898552e+00]]

    [[ 3.20135975e+00 1.16082029e+01 6.35383892e+00 -1.22541785e+00
    -7.81781197e-01 -7.39507914e+00 3.02070093e+00]
    [ 3.37887239e+00 -3.17085648e+00 8.15050030e+00 9.17820644e+00
    -5.42563820e+00 -1.06148596e+01 1.44039564e+01]
    [ 6.06520414e+00 -6.89214110e-01 1.18828654e+00 6.44250536e+00
    -3.90648508e+00 -7.45609093e+00 1.70780718e-02]
    [-5.51369572e+00 -5.99862814e-01 -5.97459745e+00 5.03705800e-01
    -4.89957094e-01 4.65023327e+00 6.97832489e+00]
    [ 5.56566572e+00 3.15251064e+00 4.23309374e+00 4.58887959e+00
    1.11150384e+00 1.56815052e-01 -2.64446616e+00]]

    [[-3.47755957e+00 -2.51347685e+00 5.07092476e+00 -1.79448032e+01
    1.23025656e+00 -7.04272604e+00 -3.11969209e+00]
    [-3.64519453e+00 -2.48672795e+00 1.45192409e+00 -7.42938709e+00
    7.32508659e-01 1.73417020e+00 -8.84127915e-01]
    [ 4.80518007e+00 -1.00521259e+01 -1.47410703e+00 -2.73861027e+00
    -6.11766815e+00 5.89801645e+00 7.41809845e+00]
    [ 1.52897854e+01 3.40052223e+00 -1.17849231e-01 8.11421871e+00
    -7.15329647e-02 -8.57025623e+00 -6.36894524e-01]
    [-1.29184561e+01 -2.07097292e+00 6.51137114e+00 4.45195580e+00
    6.51636696e+00 1.94592953e-01 7.76367307e-01]]

    [[-7.64904690e+00 -4.64357853e+00 -5.09730625e+00 1.46977997e+00
    -2.66898251e+00 6.18280554e+00 7.30443239e+00]
    [ 3.74768376e-02 8.19200230e+00 -2.99126768e+00 -1.25706446e+00
    2.82602859e+00 4.79209185e-01 -7.99170971e+00]
    [-9.31276321e+00 2.71563363e+00 2.68426132e+00 -2.98767281e+00
    2.85978794e-01 5.26730251e+00 -6.51313114e+00]
    [-5.16205406e+00 -3.73660684e+00 -1.25655127e+00 -4.03212357e+00
    -2.34876966e+00 3.49581933e+00 3.21578264e-01]
    [ 4.80592680e+00 -2.01916337e+00 -2.70319057e+00 9.14705086e+00
    3.14293051e+00 -5.12257957e+00 1.87513745e+00]]]]
    ******************** op7 ********************
    [[[[ -5.3398733 4.176247 -1.0400615 1.7490227 -2.3762708
    -4.43866 -2.9152555 ]
    [ -6.2849035 2.9156108 2.2420614 3.0133455 2.697643
    -1.2664369 2.2018924 ]
    [ -1.7367094 -2.6707978 -4.823809 -2.9799473 -2.588249
    -0.8573512 0.7243177 ]]

    [[ 9.770168 -6.0919194 -7.755929 0.7116828 4.696847
    -1.5403405 -10.603018 ]
    [ -2.2849545 7.23973 0.06859291 -0.3011052 -7.885673
    -4.7223825 -1.2202084 ]
    [ -1.7584102 -0.9349402 1.8078477 6.8720684 11.548839
    -1.3058915 1.785974 ]]

    [[ 3.8749192 -5.9033284 1.3921509 -2.68101 5.386052
    5.2535496 7.804141 ]
    [ 1.9598813 -6.1589165 0.9447456 0.06089067 -3.7891803
    -2.0653834 -2.60965 ]
    [ -2.1243367 -0.9703847 1.5366316 5.8760977 -3.697129
    6.050654 -0.01914603]]]]
    ******************** op8 ********************
    [[[[ 7.6126375 -2.261326 0.32292777 8.602917 -2.9009488
    3.3160565 2.1506643 ]
    [ -3.5364501 -2.1440878 1.354662 5.531647 -1.4339367
    5.1957445 -0.9030779 ]
    [ 7.844642 -6.1276717 7.7938704 -2.23364 -3.4782376
    -5.097751 5.285432 ]]

    [[ -1.6915132 2.2787857 -5.9708385 8.21313 -4.5076394
    -0.3270775 -8.479343 ]
    [ 2.0611243 3.1743298 -0.53598183 -3.0830724 -13.820877
    5.3642063 -4.0782714 ]
    [ -2.2280676 -6.232974 6.031793 6.4705186 1.1858556
    -5.012024 -0.12968755]]

    [[ -2.7237153 -2.0637414 1.4018252 -2.937191 2.572178
    3.9408593 2.605546 ]
    [ -1.607345 5.66703 -4.989913 -6.0507936 -1.9384562
    0.61666656 -6.9282484 ]
    [ -0.03978544 -2.008681 -7.406146 -1.2036608 -3.8769712
    -3.0997906 6.066886 ]]]


    [[[ -0.6766513 -0.16299164 3.2324884 -3.3543284 2.711526
    -0.7604065 -2.9422672 ]
    [-11.477009 6.985447 -7.168281 1.6444209 2.1505005
    -2.5210168 1.248457 ]
    [ -2.5344536 0.78997815 4.921354 0.32946062 -3.4039345
    2.3872323 1.0319829 ]]

    [[ 5.672534 -4.6865053 5.780566 11.394991 1.0943577
    1.6653306 -0.93034 ]
    [ 11.131994 6.8491035 -15.839502 7.006518 3.261397
    -0.99962735 10.55006 ]
    [ 2.6103654 2.7730281 2.3594556 3.5570846 6.1872926
    4.217743 -6.4607897 ]]

    [[ -2.7581267 -0.12229636 1.351732 -4.4823456 2.1730578
    -2.828763 -3.0473292 ]
    [ -2.742803 -5.817521 -4.570032 -7.3254657 3.2537496
    -0.6938226 0.6609373 ]
    [ -3.1279428 -4.922457 2.745709 -4.864913 -3.6143937
    2.6719465 -1.1376699 ]]]


    [[[ -0.7445632 0.45240074 5.131389 -2.8525875 1.3901956
    -0.4648465 5.4685025 ]
    [ 3.1593595 1.2171756 0.1267331 -3.2178001 -2.6123729
    -5.186987 4.1898375 ]
    [ 9.478796 -1.8722348 4.896418 1.301182 -3.6362329
    -1.9956454 -1.770525 ]]

    [[ 4.8301635 -3.8837552 7.0490103 1.2435023 3.4047306
    -3.2604568 1.051601 ]
    [ -2.2003438 0.88552344 -6.8119774 7.017317 -2.9890797
    5.8106375 -0.863615 ]
    [ -0.17809808 -10.802618 3.225249 -2.0419974 5.072168
    1.2349106 -4.600774 ]]

    [[ -3.1843624 -2.5729177 1.191327 -3.0042355 0.97465754
    -4.564925 3.9409044 ]
    [ 1.2322719 14.114404 -0.35690814 2.2237332 0.35432827
    -1.9053037 -12.545719 ]
    [ 0.80399454 -5.358243 -6.344287 3.5417094 -3.9716966
    -0.02347088 3.0606985 ]]]


    [[[ 0.37148464 -3.8297706 -2.0831337 6.29245 2.5057077
    0.8506646 1.9863653 ]
    [ 3.765554 1.4267049 1.0800252 7.7149706 0.44219214
    8.109619 3.6685073 ]
    [ 4.635173 -2.9154918 -6.4538617 -5.448964 6.57819
    0.61271524 2.9938192 ]]

    [[ -3.616211 0.0879938 -6.3440037 1.6937144 0.04956067
    2.4064069 -8.493458 ]
    [ -5.0647597 0.93558145 -1.9845109 -8.771115 4.6100225
    1.1144816 -12.28625 ]
    [ 1.0221918 -7.5176277 -1.8426392 -4.289383 2.2868915
    -8.87014 -0.3772235 ]]

    [[ -1.1132717 2.4524128 -0.365159 4.004697 -1.5730555
    0.5331385 -6.8898973 ]
    [ 3.5391765 2.8012395 0.7159001 7.421248 -3.0292435
    3.0187619 -3.9419355 ]
    [ -5.387392 -6.63677 2.4566684 1.821631 -0.16935372
    -0.88219285 2.2688925 ]]]


    [[[ -3.9313369 -1.8516166 -3.2839324 -6.9028835 8.055535
    -1.080044 -1.732337 ]
    [ -3.1068752 2.6514802 3.7293913 -1.7883471 -5.44104
    -4.5572286 -4.829409 ]
    [ 2.6451612 -3.1832254 3.171578 -4.6448216 -4.001822
    -6.899353 -0.6295476 ]]

    [[ -0.65707624 -1.9670736 6.3386445 2.3041923 -4.439172
    -2.9729037 -0.94020796]
    [ 0.43153757 5.194006 0.45434368 3.0731819 4.0513067
    -5.8058457 6.947601 ]
    [ -4.2653627 0.9031774 -1.6685407 -5.4121113 0.5529208
    0.7007126 9.279081 ]]

    [[ -0.37299162 2.7452188 1.9330034 3.6408103 -5.0701776
    1.1965587 0.59263295]
    [ 4.81972 -1.1006856 7.8824034 5.260598 3.434634
    0.04601002 8.869657 ]
    [ 4.231048 1.5457909 -4.7653384 -3.4977267 3.7780495
    -5.872396 12.113913 ]]]


    [[[ -3.8766992 -0.398234 -1.9723368 1.2132525 0.56892383
    1.2515173 3.7913866 ]
    [ -0.4337333 1.8678297 5.1747704 -0.6080067 -1.3174248
    -1.7126535 0.4686459 ]
    [ -5.754308 -2.4168007 -3.6410232 -4.5670137 1.6215359
    -4.580209 -5.5926514 ]]

    [[ 11.04498 4.4554973 3.8934658 -1.4875691 -11.931008
    4.515834 -6.144173 ]
    [ 3.8855233 -7.6059284 5.552779 -0.4441495 4.6369743
    2.3952575 4.981801 ]
    [ -4.5357304 8.016967 -3.8956852 8.697634 0.7237491
    -1.2161034 9.980692 ]]

    [[ -3.8816683 -6.1477547 6.313223 3.8985054 -2.1990623
    2.0681944 -0.53726804]
    [ 0.9768859 0.2593964 5.1300526 -4.3372006 4.838679
    1.2677834 1.0290532 ]
    [ -2.7676988 6.0724287 4.556395 -2.004102 -0.79856735
    2.4891334 -1.8703268 ]]]


    [[[ -2.4113853 -4.7984595 -0.28992027 1.1324785 5.6149826
    3.4891384 -0.2521189 ]
    [ 11.86079 -2.660718 1.3913785 -9.618228 0.04568058
    -2.8031406 1.12844 ]
    [ -0.08115374 2.8916602 -5.7155695 -5.4544435 2.526495
    6.5253263 1.3852744 ]]

    [[ -1.5733382 -0.08704215 2.6952646 7.385515 -0.7799995
    3.1702318 -14.530704 ]
    [ 0.05908662 -13.9438095 -1.154305 3.4328744 7.0506897
    -5.0249805 2.5534477 ]
    [ 0.61222774 0.14303133 4.685219 -7.0924406 1.7709903
    1.0107443 -4.5374393 ]]

    [[ -5.6678987 0.6903403 2.23693 1.2741803 -6.179094
    3.0454116 -5.2941957 ]
    [ 0.23656422 -2.2511265 3.3220747 2.021302 -3.070989
    -3.815312 3.7513428 ]
    [ 5.048253 5.163742 -3.064779 5.2195883 6.6997313
    -2.0612605 2.076776 ]]]


    [[[ -1.1741709 0.50855964 3.7991686 6.946745 -0.99349356
    1.4751754 -1.08081 ]
    [ 2.1064334 0.3293423 1.8446237 -0.3842956 3.8418627
    -2.5760477 -4.709687 ]
    [ -3.8787804 5.9237094 -3.8139226 3.2697144 -2.5398688
    4.3881574 11.573359 ]]

    [[ -3.1857545 7.100687 -3.9305675 0.6854049 -1.2562029
    1.2753329 8.361776 ]
    [ 2.7635245 -1.649135 -1.3044827 5.9628034 7.0507197
    8.040147 -0.5544966 ]
    [ 6.0894575 1.864697 2.0811782 -8.773295 3.7755995
    5.5564737 -3.4745088 ]]

    [[ 1.3517151 2.8740213 -6.181453 0.21349654 -5.9370227
    -1.6817973 3.0836923 ]
    [ -0.7866033 2.7180645 3.2119308 4.905232 -3.8589058
    -3.349786 -1.2415386 ]
    [ 7.3208423 7.184522 1.8396591 0.25130635 4.5287986
    -1.9662986 -5.4157324 ]]]


    [[[ -1.796482 -0.19289398 0.08456608 9.18009 4.3642817
    3.9750414 10.058201 ]
    [ -3.404979 10.002911 2.6454616 0.09656489 -5.6097493
    2.0856397 8.30741 ]
    [ -6.1940312 0.20053774 7.5518293 1.6553136 -6.075909
    1.9946573 -8.276907 ]]

    [[ 1.5515908 -4.065265 6.201588 -10.958014 2.8450232
    1.7398013 6.308612 ]
    [ 1.3526641 -0.20383507 -0.97939104 -12.001176 6.5776787
    7.0159016 -2.6269057 ]
    [ -3.5487242 -2.0833373 2.128775 8.243093 -1.1012591
    3.3278828 0.64393663]]

    [[ 2.3041837 -1.2524377 3.4256964 3.190121 0.32376206
    1.0883296 -3.531728 ]
    [ -2.393531 0.57050663 -3.172806 7.0572777 -0.7350081
    -2.5658474 -6.9233646 ]
    [ -1.0682559 -0.22647202 10.799706 -5.5458803 -3.2260892
    -0.6237745 6.320084 ]]]


    [[[ 8.890318 1.926058 -5.8980203 3.4635465 2.0711088
    -1.0413806 -6.304987 ]
    [ -7.1290493 -8.781645 -10.162883 3.1751637 2.1062303
    -0.04042304 -14.788281 ]
    [ -1.382834 -7.988844 2.7986026 -1.9692816 0.30068183
    -1.4710974 -5.3116736 ]]

    [[ -7.576119 -3.2894049 0.7375753 -1.3818941 2.9862103
    -6.683834 -7.8058653 ]
    [ 4.9312177 -0.04471028 -0.34124258 8.375692 -8.983649
    -2.1781216 -12.752575 ]
    [ 9.337945 -5.1725883 10.788802 0.9727853 -2.5389743
    1.0551623 1.4216776 ]]

    [[ 1.5142308 4.546703 -2.5327616 4.6643023 -2.0437615
    -1.7893765 4.8349857 ]
    [ 3.843536 8.979685 -5.5770497 12.787272 3.2864804
    -9.081071 5.1559086 ]
    [ -3.7020745 9.714738 -5.7880783 -2.3634226 4.0264153
    5.8175054 -7.454776 ]]]]

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    90
    91
    92
    93
    94
    95
    96
    97
    98
    99
    100
    101
    102
    103
    104
    105
    106
    107
    108
    109
    110
    111
    112
    113
    114
    115
    116
    117
    118
    119
    120
    121
    122
    123
    124
    125
    126
    127
    128
    129
    130
    131
    132
    133
    134
    135
    136
    137
    138
    139
    140
    141
    142
    143
    144
    145
    146
    147
    148
    149
    150
    151
    152
    153
    154
    155
    156
    157
    158
    159
    160
    161
    162
    163
    164
    165
    166
    167
    168
    169
    170
    171
    172
    173
    174
    175
    176
    177
    178
    179
    180
    181
    182
    183
    184
    185
    186
    187
    188
    189
    190
    191
    192
    193
    194
    195
    196
    197
    198
    199
    200
    201
    202
    203
    204
    205
    206
    207
    208
    209
    210
    211
    212
    213
    214
    215
    216
    217
    218
    219
    220
    221
    222
    223
    224
    225
    226
    227
    228
    229
    230
    231
    232
    233
    234
    235
    236
    237
    238
    239
    240
    241
    242
    243
    244
    245
    246
    247
    248
    249
    250
    251
    252
    253
    254
    255
    256
    257
    258
    259
    260
    261
    262
    263
    264
    265
    266
    267
    268
    269
    270
    271
    272
    273
    274
    275
    276
    277
    278
    279
    280
    281
    282
    283
    284
    285
    286
    287
    288
    289
    290
    291
    292
    293
    294
    295
    296
    297
    298
    299
    300
    301
    302
    303
    304
    305
    306
    307
    308
    309
    310
    311
    312
    313
    314
    315
    316
    317
    318
    319
    320
    321
    322
    323
    324
    325
    326
    327
    328
    329
    330
    331
    332
    333
    334
    335
    336
    337
    338
    339
    340
    341
    342
    343
    344
    345
    346
    347
    348
    349
    350
    351
    352
    353
    354
    355
    356
    357
    358
    359
    360
    361
    362
    363
    364
    365
    366
    参考:
    1、https://blog.csdn.net/mao_xiao_feng/article/details/53444333
    2、https://www.tensorflow.org/api_docs/python/tf/nn/conv2d
    3、CNN原理介绍 https://blog.csdn.net/v_july_v/article/details/51812459
    ---------------------
    作者:左理想fisher
    来源:CSDN
    原文:https://blog.csdn.net/zuolixiangfisher/article/details/80528989
    版权声明:本文为博主原创文章,转载请附上博文链接!

  • 相关阅读:
    思考题13-1.b
    算法导论 第三版 9.3-8
    算法导论第三版思考题8-4
    算法导论第三版思考题8-3.b
    算法导论第三版思考题8-3.a
    算法导论第三版思考题8-2.e
    算法导论 第三版 思考题 7-4
    test
    一个朋友面试时遇到的算法题(怎么组合后得到最大整数)
    监听器模式、观察者模式
  • 原文地址:https://www.cnblogs.com/jfdwd/p/11184347.html
Copyright © 2020-2023  润新知