最近在研究学习TensorFlow,在做识别手写数字的demo时,遇到了tf.nn.conv2d这个方法,查阅了官网的API 发现讲得比较简略,还是没理解。google了一下,参考了网上一些朋友写得博客,结合自己的理解,差不多整明白了。
方法定义
tf.nn.conv2d (input, filter, strides, padding, use_cudnn_on_gpu=None, data_format=None, name=None)
参数:
**input : ** 输入的要做卷积的图片,要求为一个张量,shape为 [ batch, in_height, in_weight, in_channel ],其中batch为图片的数量,in_height 为图片高度,in_weight 为图片宽度,in_channel 为图片的通道数,灰度图该值为1,彩色图为3。(也可以用其它值,但是具体含义不是很理解)
filter: 卷积核,要求也是一个张量,shape为 [ filter_height, filter_weight, in_channel, out_channels ],其中 filter_height 为卷积核高度,filter_weight 为卷积核宽度,in_channel 是图像通道数 ,和 input 的 in_channel 要保持一致,out_channel 是卷积核数量。
strides: 卷积时在图像每一维的步长,这是一个一维的向量,[ 1, strides, strides, 1],第一位和最后一位固定必须是1
padding: string类型,值为“SAME” 和 “VALID”,表示的是卷积的形式,是否考虑边界。"SAME"是考虑边界,不足的时候用0去填充周围,"VALID"则不考虑
use_cudnn_on_gpu: bool类型,是否使用cudnn加速,默认为true
具体实现
import tensorflow as tf
# case 1
# 输入是1张 3*3 大小的图片,图像通道数是5,卷积核是 1*1 大小,数量是1
# 步长是[1,1,1,1]最后得到一个 3*3 的feature map
# 1张图最后输出就是一个 shape为[1,3,3,1] 的张量
input = tf.Variable(tf.random_normal([1,3,3,5]))
filter = tf.Variable(tf.random_normal([1,1,5,1]))
op1 = tf.nn.conv2d(input, filter, strides=[1,1,1,1], padding='SAME')
# case 2
# 输入是1张 3*3 大小的图片,图像通道数是5,卷积核是 2*2 大小,数量是1
# 步长是[1,1,1,1]最后得到一个 3*3 的feature map
# 1张图最后输出就是一个 shape为[1,3,3,1] 的张量
input = tf.Variable(tf.random_normal([1,3,3,5]))
filter = tf.Variable(tf.random_normal([2,2,5,1]))
op2 = tf.nn.conv2d(input, filter, strides=[1,1,1,1], padding='SAME')
# case 3
# 输入是1张 3*3 大小的图片,图像通道数是5,卷积核是 3*3 大小,数量是1
# 步长是[1,1,1,1]最后得到一个 1*1 的feature map (不考虑边界)
# 1张图最后输出就是一个 shape为[1,1,1,1] 的张量
input = tf.Variable(tf.random_normal([1,3,3,5]))
filter = tf.Variable(tf.random_normal([3,3,5,1]))
op3 = tf.nn.conv2d(input, filter, strides=[1, 1, 1, 1], padding='VALID')
# case 4
# 输入是1张 5*5 大小的图片,图像通道数是5,卷积核是 3*3 大小,数量是1
# 步长是[1,1,1,1]最后得到一个 3*3 的feature map (不考虑边界)
# 1张图最后输出就是一个 shape为[1,3,3,1] 的张量
input = tf.Variable(tf.random_normal([1,5,5,5]))
filter = tf.Variable(tf.random_normal([3,3,5,1]))
op4 = tf.nn.conv2d(input, filter, strides=[1, 1, 1, 1], padding='VALID')
# case 5
# 输入是1张 5*5 大小的图片,图像通道数是5,卷积核是 3*3 大小,数量是1
# 步长是[1,1,1,1]最后得到一个 5*5 的feature map (考虑边界)
# 1张图最后输出就是一个 shape为[1,5,5,1] 的张量
input = tf.Variable(tf.random_normal([1,5,5,5]))
filter = tf.Variable(tf.random_normal([3,3,5,1]))
op5 = tf.nn.conv2d(input, filter, strides=[1, 1, 1, 1], padding='SAME')
# case 6
# 输入是1张 5*5 大小的图片,图像通道数是5,卷积核是 3*3 大小,数量是7
# 步长是[1,1,1,1]最后得到一个 5*5 的feature map (考虑边界)
# 1张图最后输出就是一个 shape为[1,5,5,7] 的张量
input = tf.Variable(tf.random_normal([1,5,5,5]))
filter = tf.Variable(tf.random_normal([3,3,5,7]))
op6 = tf.nn.conv2d(input, filter, strides=[1, 1, 1, 1], padding='SAME')
# case 7
# 输入是1张 5*5 大小的图片,图像通道数是5,卷积核是 3*3 大小,数量是7
# 步长是[1,2,2,1]最后得到7个 3*3 的feature map (考虑边界)
# 1张图最后输出就是一个 shape为[1,3,3,7] 的张量
input = tf.Variable(tf.random_normal([1,5,5,5]))
filter = tf.Variable(tf.random_normal([3,3,5,7]))
op7 = tf.nn.conv2d(input, filter, strides=[1, 2, 2, 1], padding='SAME')
# case 8
# 输入是10 张 5*5 大小的图片,图像通道数是5,卷积核是 3*3 大小,数量是7
# 步长是[1,2,2,1]最后每张图得到7个 3*3 的feature map (考虑边界)
# 10张图最后输出就是一个 shape为[10,3,3,7] 的张量
input = tf.Variable(tf.random_normal([10,5,5,5]))
filter = tf.Variable(tf.random_normal([3,3,5,7]))
op8 = tf.nn.conv2d(input, filter, strides=[1, 2, 2, 1], padding='SAME')
init = tf.initialize_all_variables()
with tf.Session() as sess:
sess.run(init)
print('*' * 20 + ' op1 ' + '*' * 20)
print(sess.run(op1))
print('*' * 20 + ' op2 ' + '*' * 20)
print(sess.run(op2))
print('*' * 20 + ' op3 ' + '*' * 20)
print(sess.run(op3))
print('*' * 20 + ' op4 ' + '*' * 20)
print(sess.run(op4))
print('*' * 20 + ' op5 ' + '*' * 20)
print(sess.run(op5))
print('*' * 20 + ' op6 ' + '*' * 20)
print(sess.run(op6))
print('*' * 20 + ' op7 ' + '*' * 20)
print(sess.run(op7))
print('*' * 20 + ' op8 ' + '*' * 20)
print(sess.run(op8))
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
# 运行结果
******************** op1 ********************
[[[[ 0.78366613]
[-0.11703026]
[ 3.533338 ]]
[[ 3.4455981 ]
[-2.40102 ]
[-1.3336506 ]]
[[ 1.9816184 ]
[-3.3166158 ]
[ 2.0968733 ]]]]
******************** op2 ********************
[[[[-4.429776 ]
[ 4.1218996 ]
[-4.1383405 ]]
[[ 0.4804101 ]
[ 1.3983132 ]
[ 1.2663789 ]]
[[-1.8450742 ]
[-0.02915052]
[-0.5696235 ]]]]
******************** op3 ********************
[[[[-6.969367]]]]
******************** op4 ********************
[[[[ -2.9217496 ]
[ 4.4683943 ]
[ 7.5761824 ]]
[[-14.627491 ]
[ -5.014709 ]
[ -3.4593797 ]]
[[ 0.45091882]
[ 4.8827124 ]
[ -9.658895 ]]]]
******************** op5 ********************
[[[[-2.8486536 ]
[ 1.3990458 ]
[ 2.953944 ]
[-6.007198 ]
[ 5.089696 ]]
[[-0.20283715]
[ 2.4726171 ]
[ 6.2137847 ]
[-0.38609552]
[-1.8869443 ]]
[[ 7.7240233 ]
[10.6962805 ]
[-3.1667676 ]
[-3.6487846 ]
[-2.2908094 ]]
[[-9.00223 ]
[ 4.5111785 ]
[ 2.5615098 ]
[-5.8492236 ]
[ 1.7734764 ]]
[[ 2.3674765 ]
[-5.9122458 ]
[ 5.867611 ]
[-0.50353 ]
[-4.890904 ]]]]
******************** op6 ********************
[[[[-4.06957626e+00 5.69651246e-01 2.97890633e-01 -5.08075190e+00
2.76357365e+00 -7.34121323e+00 -2.09436584e+00]
[-9.03515625e+00 -8.96854973e+00 -4.40316677e+00 -3.23745847e+00
-3.56242275e+00 3.67262197e+00 2.59603453e+00]
[ 1.25131302e+01 1.30267200e+01 2.25630283e+00 3.31285048e+00
-1.00396938e+01 -9.06786323e-01 -7.20120049e+00]
[-3.18641067e-01 -7.66135693e+00 5.02029419e+00 -1.65469778e+00
-5.53000355e+00 -4.76842117e+00 4.98133230e+00]
[ 3.68885136e+00 2.54145473e-01 -4.17096436e-01 1.20136106e+00
-2.29291725e+00 6.98313904e+00 4.92819786e-01]]
[[ 1.22962761e+01 3.85902214e+00 -2.91524696e+00 -6.89016438e+00
3.35520816e+00 -1.85112596e+00 5.59113741e+00]
[ 2.99087334e+00 4.42690086e+00 -3.34755349e+00 -7.41521478e-01
3.65099478e+00 -2.84761238e+00 -2.74149513e+00]
[-9.65088654e+00 -4.91817188e+00 3.82093906e+00 -5.72443676e+00
1.43630829e+01 5.11133957e+00 -1.18163595e+01]
[ 1.69606721e+00 -1.00837049e+01 9.65112305e+00 3.48559356e+00
4.71356201e+00 -2.74463081e+00 -5.76961470e+00]
[-5.11555862e+00 1.06215849e+01 1.97274566e+00 -1.66155469e+00
5.40411043e+00 1.64753020e+00 -2.25898552e+00]]
[[ 3.20135975e+00 1.16082029e+01 6.35383892e+00 -1.22541785e+00
-7.81781197e-01 -7.39507914e+00 3.02070093e+00]
[ 3.37887239e+00 -3.17085648e+00 8.15050030e+00 9.17820644e+00
-5.42563820e+00 -1.06148596e+01 1.44039564e+01]
[ 6.06520414e+00 -6.89214110e-01 1.18828654e+00 6.44250536e+00
-3.90648508e+00 -7.45609093e+00 1.70780718e-02]
[-5.51369572e+00 -5.99862814e-01 -5.97459745e+00 5.03705800e-01
-4.89957094e-01 4.65023327e+00 6.97832489e+00]
[ 5.56566572e+00 3.15251064e+00 4.23309374e+00 4.58887959e+00
1.11150384e+00 1.56815052e-01 -2.64446616e+00]]
[[-3.47755957e+00 -2.51347685e+00 5.07092476e+00 -1.79448032e+01
1.23025656e+00 -7.04272604e+00 -3.11969209e+00]
[-3.64519453e+00 -2.48672795e+00 1.45192409e+00 -7.42938709e+00
7.32508659e-01 1.73417020e+00 -8.84127915e-01]
[ 4.80518007e+00 -1.00521259e+01 -1.47410703e+00 -2.73861027e+00
-6.11766815e+00 5.89801645e+00 7.41809845e+00]
[ 1.52897854e+01 3.40052223e+00 -1.17849231e-01 8.11421871e+00
-7.15329647e-02 -8.57025623e+00 -6.36894524e-01]
[-1.29184561e+01 -2.07097292e+00 6.51137114e+00 4.45195580e+00
6.51636696e+00 1.94592953e-01 7.76367307e-01]]
[[-7.64904690e+00 -4.64357853e+00 -5.09730625e+00 1.46977997e+00
-2.66898251e+00 6.18280554e+00 7.30443239e+00]
[ 3.74768376e-02 8.19200230e+00 -2.99126768e+00 -1.25706446e+00
2.82602859e+00 4.79209185e-01 -7.99170971e+00]
[-9.31276321e+00 2.71563363e+00 2.68426132e+00 -2.98767281e+00
2.85978794e-01 5.26730251e+00 -6.51313114e+00]
[-5.16205406e+00 -3.73660684e+00 -1.25655127e+00 -4.03212357e+00
-2.34876966e+00 3.49581933e+00 3.21578264e-01]
[ 4.80592680e+00 -2.01916337e+00 -2.70319057e+00 9.14705086e+00
3.14293051e+00 -5.12257957e+00 1.87513745e+00]]]]
******************** op7 ********************
[[[[ -5.3398733 4.176247 -1.0400615 1.7490227 -2.3762708
-4.43866 -2.9152555 ]
[ -6.2849035 2.9156108 2.2420614 3.0133455 2.697643
-1.2664369 2.2018924 ]
[ -1.7367094 -2.6707978 -4.823809 -2.9799473 -2.588249
-0.8573512 0.7243177 ]]
[[ 9.770168 -6.0919194 -7.755929 0.7116828 4.696847
-1.5403405 -10.603018 ]
[ -2.2849545 7.23973 0.06859291 -0.3011052 -7.885673
-4.7223825 -1.2202084 ]
[ -1.7584102 -0.9349402 1.8078477 6.8720684 11.548839
-1.3058915 1.785974 ]]
[[ 3.8749192 -5.9033284 1.3921509 -2.68101 5.386052
5.2535496 7.804141 ]
[ 1.9598813 -6.1589165 0.9447456 0.06089067 -3.7891803
-2.0653834 -2.60965 ]
[ -2.1243367 -0.9703847 1.5366316 5.8760977 -3.697129
6.050654 -0.01914603]]]]
******************** op8 ********************
[[[[ 7.6126375 -2.261326 0.32292777 8.602917 -2.9009488
3.3160565 2.1506643 ]
[ -3.5364501 -2.1440878 1.354662 5.531647 -1.4339367
5.1957445 -0.9030779 ]
[ 7.844642 -6.1276717 7.7938704 -2.23364 -3.4782376
-5.097751 5.285432 ]]
[[ -1.6915132 2.2787857 -5.9708385 8.21313 -4.5076394
-0.3270775 -8.479343 ]
[ 2.0611243 3.1743298 -0.53598183 -3.0830724 -13.820877
5.3642063 -4.0782714 ]
[ -2.2280676 -6.232974 6.031793 6.4705186 1.1858556
-5.012024 -0.12968755]]
[[ -2.7237153 -2.0637414 1.4018252 -2.937191 2.572178
3.9408593 2.605546 ]
[ -1.607345 5.66703 -4.989913 -6.0507936 -1.9384562
0.61666656 -6.9282484 ]
[ -0.03978544 -2.008681 -7.406146 -1.2036608 -3.8769712
-3.0997906 6.066886 ]]]
[[[ -0.6766513 -0.16299164 3.2324884 -3.3543284 2.711526
-0.7604065 -2.9422672 ]
[-11.477009 6.985447 -7.168281 1.6444209 2.1505005
-2.5210168 1.248457 ]
[ -2.5344536 0.78997815 4.921354 0.32946062 -3.4039345
2.3872323 1.0319829 ]]
[[ 5.672534 -4.6865053 5.780566 11.394991 1.0943577
1.6653306 -0.93034 ]
[ 11.131994 6.8491035 -15.839502 7.006518 3.261397
-0.99962735 10.55006 ]
[ 2.6103654 2.7730281 2.3594556 3.5570846 6.1872926
4.217743 -6.4607897 ]]
[[ -2.7581267 -0.12229636 1.351732 -4.4823456 2.1730578
-2.828763 -3.0473292 ]
[ -2.742803 -5.817521 -4.570032 -7.3254657 3.2537496
-0.6938226 0.6609373 ]
[ -3.1279428 -4.922457 2.745709 -4.864913 -3.6143937
2.6719465 -1.1376699 ]]]
[[[ -0.7445632 0.45240074 5.131389 -2.8525875 1.3901956
-0.4648465 5.4685025 ]
[ 3.1593595 1.2171756 0.1267331 -3.2178001 -2.6123729
-5.186987 4.1898375 ]
[ 9.478796 -1.8722348 4.896418 1.301182 -3.6362329
-1.9956454 -1.770525 ]]
[[ 4.8301635 -3.8837552 7.0490103 1.2435023 3.4047306
-3.2604568 1.051601 ]
[ -2.2003438 0.88552344 -6.8119774 7.017317 -2.9890797
5.8106375 -0.863615 ]
[ -0.17809808 -10.802618 3.225249 -2.0419974 5.072168
1.2349106 -4.600774 ]]
[[ -3.1843624 -2.5729177 1.191327 -3.0042355 0.97465754
-4.564925 3.9409044 ]
[ 1.2322719 14.114404 -0.35690814 2.2237332 0.35432827
-1.9053037 -12.545719 ]
[ 0.80399454 -5.358243 -6.344287 3.5417094 -3.9716966
-0.02347088 3.0606985 ]]]
[[[ 0.37148464 -3.8297706 -2.0831337 6.29245 2.5057077
0.8506646 1.9863653 ]
[ 3.765554 1.4267049 1.0800252 7.7149706 0.44219214
8.109619 3.6685073 ]
[ 4.635173 -2.9154918 -6.4538617 -5.448964 6.57819
0.61271524 2.9938192 ]]
[[ -3.616211 0.0879938 -6.3440037 1.6937144 0.04956067
2.4064069 -8.493458 ]
[ -5.0647597 0.93558145 -1.9845109 -8.771115 4.6100225
1.1144816 -12.28625 ]
[ 1.0221918 -7.5176277 -1.8426392 -4.289383 2.2868915
-8.87014 -0.3772235 ]]
[[ -1.1132717 2.4524128 -0.365159 4.004697 -1.5730555
0.5331385 -6.8898973 ]
[ 3.5391765 2.8012395 0.7159001 7.421248 -3.0292435
3.0187619 -3.9419355 ]
[ -5.387392 -6.63677 2.4566684 1.821631 -0.16935372
-0.88219285 2.2688925 ]]]
[[[ -3.9313369 -1.8516166 -3.2839324 -6.9028835 8.055535
-1.080044 -1.732337 ]
[ -3.1068752 2.6514802 3.7293913 -1.7883471 -5.44104
-4.5572286 -4.829409 ]
[ 2.6451612 -3.1832254 3.171578 -4.6448216 -4.001822
-6.899353 -0.6295476 ]]
[[ -0.65707624 -1.9670736 6.3386445 2.3041923 -4.439172
-2.9729037 -0.94020796]
[ 0.43153757 5.194006 0.45434368 3.0731819 4.0513067
-5.8058457 6.947601 ]
[ -4.2653627 0.9031774 -1.6685407 -5.4121113 0.5529208
0.7007126 9.279081 ]]
[[ -0.37299162 2.7452188 1.9330034 3.6408103 -5.0701776
1.1965587 0.59263295]
[ 4.81972 -1.1006856 7.8824034 5.260598 3.434634
0.04601002 8.869657 ]
[ 4.231048 1.5457909 -4.7653384 -3.4977267 3.7780495
-5.872396 12.113913 ]]]
[[[ -3.8766992 -0.398234 -1.9723368 1.2132525 0.56892383
1.2515173 3.7913866 ]
[ -0.4337333 1.8678297 5.1747704 -0.6080067 -1.3174248
-1.7126535 0.4686459 ]
[ -5.754308 -2.4168007 -3.6410232 -4.5670137 1.6215359
-4.580209 -5.5926514 ]]
[[ 11.04498 4.4554973 3.8934658 -1.4875691 -11.931008
4.515834 -6.144173 ]
[ 3.8855233 -7.6059284 5.552779 -0.4441495 4.6369743
2.3952575 4.981801 ]
[ -4.5357304 8.016967 -3.8956852 8.697634 0.7237491
-1.2161034 9.980692 ]]
[[ -3.8816683 -6.1477547 6.313223 3.8985054 -2.1990623
2.0681944 -0.53726804]
[ 0.9768859 0.2593964 5.1300526 -4.3372006 4.838679
1.2677834 1.0290532 ]
[ -2.7676988 6.0724287 4.556395 -2.004102 -0.79856735
2.4891334 -1.8703268 ]]]
[[[ -2.4113853 -4.7984595 -0.28992027 1.1324785 5.6149826
3.4891384 -0.2521189 ]
[ 11.86079 -2.660718 1.3913785 -9.618228 0.04568058
-2.8031406 1.12844 ]
[ -0.08115374 2.8916602 -5.7155695 -5.4544435 2.526495
6.5253263 1.3852744 ]]
[[ -1.5733382 -0.08704215 2.6952646 7.385515 -0.7799995
3.1702318 -14.530704 ]
[ 0.05908662 -13.9438095 -1.154305 3.4328744 7.0506897
-5.0249805 2.5534477 ]
[ 0.61222774 0.14303133 4.685219 -7.0924406 1.7709903
1.0107443 -4.5374393 ]]
[[ -5.6678987 0.6903403 2.23693 1.2741803 -6.179094
3.0454116 -5.2941957 ]
[ 0.23656422 -2.2511265 3.3220747 2.021302 -3.070989
-3.815312 3.7513428 ]
[ 5.048253 5.163742 -3.064779 5.2195883 6.6997313
-2.0612605 2.076776 ]]]
[[[ -1.1741709 0.50855964 3.7991686 6.946745 -0.99349356
1.4751754 -1.08081 ]
[ 2.1064334 0.3293423 1.8446237 -0.3842956 3.8418627
-2.5760477 -4.709687 ]
[ -3.8787804 5.9237094 -3.8139226 3.2697144 -2.5398688
4.3881574 11.573359 ]]
[[ -3.1857545 7.100687 -3.9305675 0.6854049 -1.2562029
1.2753329 8.361776 ]
[ 2.7635245 -1.649135 -1.3044827 5.9628034 7.0507197
8.040147 -0.5544966 ]
[ 6.0894575 1.864697 2.0811782 -8.773295 3.7755995
5.5564737 -3.4745088 ]]
[[ 1.3517151 2.8740213 -6.181453 0.21349654 -5.9370227
-1.6817973 3.0836923 ]
[ -0.7866033 2.7180645 3.2119308 4.905232 -3.8589058
-3.349786 -1.2415386 ]
[ 7.3208423 7.184522 1.8396591 0.25130635 4.5287986
-1.9662986 -5.4157324 ]]]
[[[ -1.796482 -0.19289398 0.08456608 9.18009 4.3642817
3.9750414 10.058201 ]
[ -3.404979 10.002911 2.6454616 0.09656489 -5.6097493
2.0856397 8.30741 ]
[ -6.1940312 0.20053774 7.5518293 1.6553136 -6.075909
1.9946573 -8.276907 ]]
[[ 1.5515908 -4.065265 6.201588 -10.958014 2.8450232
1.7398013 6.308612 ]
[ 1.3526641 -0.20383507 -0.97939104 -12.001176 6.5776787
7.0159016 -2.6269057 ]
[ -3.5487242 -2.0833373 2.128775 8.243093 -1.1012591
3.3278828 0.64393663]]
[[ 2.3041837 -1.2524377 3.4256964 3.190121 0.32376206
1.0883296 -3.531728 ]
[ -2.393531 0.57050663 -3.172806 7.0572777 -0.7350081
-2.5658474 -6.9233646 ]
[ -1.0682559 -0.22647202 10.799706 -5.5458803 -3.2260892
-0.6237745 6.320084 ]]]
[[[ 8.890318 1.926058 -5.8980203 3.4635465 2.0711088
-1.0413806 -6.304987 ]
[ -7.1290493 -8.781645 -10.162883 3.1751637 2.1062303
-0.04042304 -14.788281 ]
[ -1.382834 -7.988844 2.7986026 -1.9692816 0.30068183
-1.4710974 -5.3116736 ]]
[[ -7.576119 -3.2894049 0.7375753 -1.3818941 2.9862103
-6.683834 -7.8058653 ]
[ 4.9312177 -0.04471028 -0.34124258 8.375692 -8.983649
-2.1781216 -12.752575 ]
[ 9.337945 -5.1725883 10.788802 0.9727853 -2.5389743
1.0551623 1.4216776 ]]
[[ 1.5142308 4.546703 -2.5327616 4.6643023 -2.0437615
-1.7893765 4.8349857 ]
[ 3.843536 8.979685 -5.5770497 12.787272 3.2864804
-9.081071 5.1559086 ]
[ -3.7020745 9.714738 -5.7880783 -2.3634226 4.0264153
5.8175054 -7.454776 ]]]]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
参考:
1、https://blog.csdn.net/mao_xiao_feng/article/details/53444333
2、https://www.tensorflow.org/api_docs/python/tf/nn/conv2d
3、CNN原理介绍 https://blog.csdn.net/v_july_v/article/details/51812459
---------------------
作者:左理想fisher
来源:CSDN
原文:https://blog.csdn.net/zuolixiangfisher/article/details/80528989
版权声明:本文为博主原创文章,转载请附上博文链接!