• [实现] 利用 Seq2Seq 预测句子后续字词 (Pytorch)


    最近有个任务:利用 RNN 进行句子补全,即给定一个不完整的句子,预测其后续的字词。
    本文使用了 Seq2Seq 模型,输入为5个中文字词,输出为一个中文字词。

    目录

    1. 关于RNN

    2. 语料预处理

    3. 搭建数据集

    4. 搭建模型

    5. 训练模型

    6. 测试模型

    7. 保存/加载模型

    1.关于RNN

    自被提出以来,循环神经网络(Recurrent Neural Networks,RNN) 在 NLP 领域取得了巨大的成功与广泛的应用,也由此催生出了许多新的变体与网络结构。由于网上有众多资料,在此我也只做简单的讲解了。
    首先,讲讲 RNN cell 及其变体:
    (1) vallina RNN cell

    不同于常见的神经网络结构,RNN 的输入为时序输入,每一时刻的输入对神经元的隐状态产生影响,从而影响后续所有时刻的输出。
    其中,隐藏层的公式如下所示:
    O_{t} = g(V* S_t), S_t = f(U*X_t+W*S_{t-1})Ot=g(V∗St),St=f(U∗Xt+W∗St−1)

    (2) LSTM cell

    LSTM(Long short-term memory,长短期记忆)极大程度的解决了长序列训练过程中的梯度消失和梯度爆炸问题。

    (3) GRU cell
    GRU(Gate Recurrent Unit)与 LSTM 一样,也极大程度的解决了长序列训练过程中的梯度消失和梯度爆炸问题。但是,与 LSTM 相比,GRU 所需要的计算资源更小,往往工程实现时更倾向于使用 GRU。

    接着,讲讲网络结构:

    (1) 常见结构:

    (2) Bi-directional RNN

    (3) Deep Bi-directional RNN

    (4) Seq2Seq

    (5) Attention

    参考资料:

    2.语料预处理

    由于这次使用的语料为中文语料,自然需要对其进行分词,并构造词典。
    首先,收集所用的句子,利用 jieba 库,对每个句子进行分词,并将所得结果加入 word_set 中。
    接着,对 word_set 中的所有字词构建统计词典。

    代码:

    import osimport jsonimport jiebaimport numpy as npimport pandas as pdimport matplotlib.pyplot as pltimport torchimport torch.nn as nnimport torch.nn.functional as Fimport torch.optim as optimfrom torch.autograd import Variableimport torchvisionimport torchvision.datasets as datasetsimport torchvision.transforms as transformsfrom torch.utils.data import DataLoader,Dataset# Set Hyper ParametersLR = 0.005EPOCH = 100BATCH_SIZE = 1Sentence_Num = 100Embedding_Dim = None# Bulid Vocabsentence_set = []								# 收集所用到的文本句子for index in range(Sentence_Num):
        with open('../../Corpus/CAIL2018/'+str(index)+'.txt','r',encoding='UTF-8') as f:
            sentence_set.append(f.read().replace('
    ', '').replace('
    ', '').replace(',', ' ').replace('。', ' ').replace(':', ' ').replace('  ', ' ').lower())
            word_set = set()								# 利用jieba库进行中文分词for sentence in sentence_set:
        words = jieba.lcut(sentence)
        word_set.update(words)
        word_to_ix = {'SOS':0, 'EOS':1, 'UNK':2}		# 'SOS': start of sentencexix_to_word = {0:'SOS', 1:'EOS', 2:'UNK'}		# 'EOS': end of sentence
    												# 'UNK': unknown tokenfor word in word_set:							# 构建词典,注意:word_to_ix用于对字词进行编号,ix_to_word用于将模型的输出转化为字词
        if word not in word_to_ix:
            word_to_ix[word] = len(word_to_ix)
            ix_to_word[len(ix_to_word)] = word
    
    Embedding_Dim = len(word_to_ix)        
            with open('./Vocab.txt','w',encoding='UTF-8') as f: # 保存词典
        for vocab in word_to_ix.items():
            f.write(vocab[0]+'   '+str(vocab[1])+'
    ')

    参考资料:

    3.搭建数据集

    由于所使用的中文文本并无数据集格式,故我们需要自己制作数据集。
    注意,代码中的 bulid_one_hot 并非生成 one-hot 向量。这是因为模型中使用了 nn.Embedding() ,它会初始一个矩阵,相当于我们模型再训练过程中,顺便训练了一个 word embedding matrix。
    至于如何使用该函数进行 word embedding ,大家可以查阅本小节的参考资料。

    代码:

    # Bulid Datasetdef bulid_one_hot(word,word_dict):
        if word in word_dict:
            return torch.LongTensor([word_dict[word]])
        return torch.LongTensor([word_dict['UNK']])
    
       class MyDataset(Dataset):
        def __init__(self, words, labels, transform=None, target_transform=None): 
            self.words = words
            self.labels = labels
            self.transform = transform
            self.target_transform = target_transform        
        def __getitem__(self, index):
            words, labels = self.words[index], self.labels[index]
            if self.transform is not None:
                words = [self.transform(word) for word in words]
            if self.target_transform is not None:
                labels = self.target_transform(labels)
            return words, labels    def __len__(self): 
            return len(self.labels)train_words, train_labels, test_words, test_labels = [], [], [], []for i in range(int(0.9*Sentence_Num)):
        sentence = sentence_set[i] 
        words =  jieba.lcut(sentence)
        words.insert(0,'SOS')
        words.append('EOS')
        words = [bulid_one_hot(word,word_to_ix) for word in words]
    
        for j in range(0,len(words),6):
            if j+6 >= len(words):
                break
            train_words.append(words[j:j+5])
            train_labels.append(words[j+5])
        for i in range(int(0.9*Sentence_Num),Sentence_Num):
        sentence = sentence_set[i]
        words =  jieba.lcut(sentence)
        words.insert(0,'SOS')
        words.append('EOS')
        words = [bulid_one_hot(word,word_to_ix) for word in words]
        
        for j in range(0,len(words),6):
            if j+6 >= len(words):
                break
            test_words.append(words[j:j+5])
            test_labels.append(words[j+5])
        trans, target_trans = None, None # transforms.ToTensor(), transforms.ToTensor()train_set = MyDataset(train_words, train_labels, trans, target_trans)train_loader = DataLoader(dataset=train_set, batch_size=BATCH_SIZE)test_set = MyDataset(test_words, test_labels, trans, target_trans)test_loader = DataLoader(dataset=test_set, batch_size=BATCH_SIZE)

    参考资料:

    4.搭建模型

    采用 GRU 结构构建 Seq2Seq 模型,其中,loss function 为 nn.CrossEntropyLoss(), optimizer 为 optim.SGD()。
    注意,pytorch 中采用 nn.CrossEntropyLoss(),对输入与输出有格式要求,请查阅本小节的参考资料。

    代码:

    # Bulid Seq2Seq Modelclass Encoder(nn.Module):
        def __init__(self, input_size, hidden_size):
            super(Encoder, self).__init__()
            self.hidden_size = hidden_size
            self.embedding = nn.Embedding(input_size, hidden_size)     # 将one-hot向量embedding为词向量
            self.gru = nn.GRU(hidden_size, hidden_size)                # GRU的hidden layer的size与词向量的size一样,并非必须 
    
        def forward(self, input, hidden):
            embedded = self.embedding(input).view(1, 1, -1)            # RNN的输入格式为 (seq_len, batch, input_size)
            output = embedded
            output, hidden = self.gru(output, hidden)
            return output, hidden    def initHidden(self):
            return torch.zeros(1, 1, self.hidden_size)                 # 初始化Encoder的隐状态 class Decoder(nn.Module):
        def __init__(self, input_size, hidden_size, output_size):
            super(Decoder, self).__init__()
            self.hidden_size = hidden_size
            self.embedding = nn.Embedding(input_size, hidden_size)
            self.gru = nn.GRU(hidden_size, hidden_size)
            self.out = nn.Linear(hidden_size, output_size)
    
        def forward(self, input, hidden):
            output = self.embedding(input).view(1, 1, -1)
            output = F.relu(output)
            output, hidden = self.gru(output, hidden)
            output = self.out(output[0])
            return output, hidden    def initHidden(self):
            return torch.zeros(1, 1, self.hidden_size)class Seq2Seq(nn.Module):
        def __init__(self, encoder, decoder):
            super(Seq2Seq, self).__init__()
            self.encoder = encoder 
            self.decoder = decoder    def forward(self, inputs):
            encoder_hidden = self.encoder.initHidden()
            if torch.cuda.is_available():
                encoder_hidden = encoder_hidden.cuda()
    
            # encode
            for word in inputs:
                encoder_out, encoder_hidden = self.encoder(word, encoder_hidden)
            
            # decode
            decoder_hidden = encoder_hidden
            pred, decoder_hidden = self.decoder(inputs[-1], decoder_hidden)
            
            return pred
    
        
    encoder = Encoder(Embedding_Dim,1000)decoder = Decoder(Embedding_Dim,1000,Embedding_Dim)if torch.cuda.is_available():
        encoder = encoder.cuda()
        decoder = decoder.cuda()
        seq2seq = Seq2Seq(encoder,decoder)if torch.cuda.is_available():
        seq2seq = seq2seq.cuda()
        # Bulid loss function and optimizer loss_func = nn.CrossEntropyLoss()#encoder_optimizer = optim.SGD(encoder.parameters(), lr=LR, momentum=0.9)#decoder_optimizer = optim.SGD(decoder.parameters(), lr=LR, momentum=0.9)seq2seq_optimizer = optim.SGD(seq2seq.parameters(), lr=LR, momentum=0.9)

    参考资料:

    5.训练模型

    代码:

    # Train Seq2Seq Modelfor epoch in range(EPOCH):  
        loss_sum = 0
        for step, (inputs, labels) in enumerate(train_loader):   
            # encoder_hidden = encoder.initHidden()
            label = torch.LongTensor((1,))
            label[0] = int(labels.data.numpy()[0])
    
            if torch.cuda.is_available():
                inputs = [word.cuda() for word in inputs]
                label = label.cuda()
                # encoder_hidden = encoder_hidden.cuda() 
                
            # forward
            pred = seq2seq(inputs)
            loss = loss_func(pred,label)
            
            # backward
            seq2seq_optimizer.zero_grad()
            loss.backward()
            seq2seq_optimizer.step()
            
            '''
            for word in inputs:
                encoder_out, encoder_hidden = encoder(word, encoder_hidden)
            decoder_hidden = encoder_hidden
            decoder_out, decoder_hidden = decoder(inputs[-1], decoder_hidden)
    
            loss = loss_func(decoder_out,label)
            
            #backward
            encoder_optimizer.zero_grad()
            decoder_optimizer.zero_grad()   
            loss.backward()                     
            encoder_optimizer.step()                  
            decoder_optimizer.step()
            '''
        
            loss_sum+= loss.data[0]
        print('Epoch: %2d train loss: %.4f' % (epoch, loss_sum))

    结果:

    6.测试模型

    代码:

    # Test Seq2Seq Modelfor step, (inputs, labels) in enumerate(test_loader):   
        # encoder_hidden = encoder.initHidden()
        label = torch.LongTensor((1,))
        label[0] = int(labels.data.numpy()[0])
        
        if torch.cuda.is_available():
            inputs = [word.cuda() for word in inputs]
            label = label.cuda()
            # encoder_hidden = encoder_hidden.cuda() 
            
        decoder_output = seq2seq(inputs)
        
        '''
         # forward
        for word in inputs:
            encoder_out, encoder_hidden = encoder(word, encoder_hidden)
        decoder_hidden = encoder_hidden
        decoder_out, decoder_hidden = decoder(inputs[-1], decoder_hidden)
        '''        
            
        # output
        ans = ''
        pred = ''
            
        for word in inputs:
            ix = word.cpu().data.numpy()[0][0]
            ans+=ix_to_word[ix]
            pred+=ix_to_word[ix]
    
        ans+=ix_to_word[int(labels.data.numpy()[0])]
        pred+=ix_to_word[np.argmax(decoder_output.cpu().data.numpy())]
            
        print('Answer: %s' % ans)
        print('Prediction: %s' % pred)

    结果:

    上述结果是全部结果中效果不错的,可以观察到:虽然模型无法完全预测后续字词,但是能依照句子的前部分继续生成意思完整的句子。
    不过,整体来看模型效果较差,我认为有以下几个原因:

    1. 所用文本数量少,仅用了100个句子进行训练。

    2. 构造的词库小,词典中仅有3000+字词,其中包括许多无意义的字词。

    3. 未对超参数进行微调。

    7.保存/加载模型

    往往大家保存和加载模型都是用的最简单的方法:torch.save(model,path),torch.load(path)
    这样的方法不仅将模型的参数保存了下来,还将模型的结构保存了下来。

    有时我们只需要保存模型的参数,我们可以采用这样的方法:torch.save(model.state_dict(),path),torch.load_state_dict(torch.load(path))

    当然,还有许多复杂的方法可以选择,大家可以查阅参考资料进一步了解。

    代码:

    # Save Seq2Seq Model'''
    torch.save(encoder.state_dict(),'../../Model/Seq2Seq/encoder_params.pkl')
    torch.save(decoder.state_dict(),'../../Model/Seq2Seq/decoder_params.pkl')
    
    torch.save(encoder,'../../Model/Seq2Seq/encoder.pkl')
    torch.save(decoder,'../../Model/Seq2Seq/decoder.pkl')
    '''torch.save(seq2seq.state_dict(),'../../Model/Seq2Seq/seq2seq_params.pkl')torch.save(seq2seq,'../../Model/Seq2Seq/seq2seq.pkl')# Load Seq2Seq Model# encoder.load_state_dict(torch.load('../../Model/Seq2Seq/encoder_params.pkl'))# decoder.load_state_dict(torch.load('../../Model/Seq2Seq/decoder_params.pkl'))seq2seq = torch.load('../../Model/Seq2Seq/seq2seq.pkl')
  • 相关阅读:
    C#性能优化实践
    JavaScript类型转换
    JSON基础
    EasyUI DataGrid 内部input的事件
    WPF之Binding基础二 控件作为Binding的数据源
    WPF之Binding基础一 UI Binding Source
    JavaScript里面的“类”
    SqlServer随笔
    对象和类型
    浅谈类
  • 原文地址:https://www.cnblogs.com/jfdwd/p/11075781.html
Copyright © 2020-2023  润新知