原文:http://blog.csdn.net/left_la/article/details/8206405
快速排序的三个步骤:
1、分解:将数组A[l...r]划分成两个(可能空)子数组A[l...p-1]和A[p+1...r],使得A[l...p-1]中的每个元素都小于等于A(p),而且,小于等于A[p+1...r]中的元素。下标p也在这个划分过程中计算。
2、解决:通过递归调用快速排序,对数组A[l...p-1]和A[p+1...r]排序。
3、合并:因为两个子数组时就地排序,将它们的合并并不需要操作,整个数组A[l..r]已经排序。
1.快速排序的基础实现:
QUICKSORT(A, l, r) if l < r then q = PARTION(A, l, r) QUICKSORT(A, l, p-1) QUICKSORT(A, p+1, r)
两路PARTION算法主要思想:
move from left to find an element that is not less
move from right to find an element that is not greater
stop if pointers have crossed
exchange
实现代码:
int partition(double* a, int left, int right) { double x = a[right]; int i = left-1, j = right; for (;;) { while(a[++i] < x) { } while(a[--j] > x) { if(j==left) break;} if(i < j) swap(a[i], a[j]); else break; } swap(a[i],a[right]); return i; } void quickSort1(double* a, int left, int right) { if (left<right) { int p = partition(a, left, right); quickSort1(a, left, p-1); quickSort1(a, p+1, right); } }
2.非递归算法:其实就是手动利用栈来存储每次分块快排的起始点,栈非空时循环获取中轴入栈。
实现代码:
void quickSort2(double* a, int left, int right) { stack<int> t; if(left<right) { int p = partition(a, left, right); if (p-1>left) { t.push(left); t.push(p-1); } if (p+1<right) { t.push(p+1); t.push(right); } while(!t.empty()) { int r = t.top(); t.pop(); int l = t.top(); t.pop(); p = partition(a, l, r); if (p-1>l) { t.push(l); t.push(p-1); } if (p+1<r) { t.push(p+1); t.push(r); } } } }
3.三路划分快速排序算法:
实现代码:
void quickSort3Way(double a[], int left, int right) { if(left < right) { double x = a[right]; int i = left-1, j = right, p = left-1, q = right; for (;;) { while (a[++i] < x) {} while (a[--j] > x) {if(j==left) break;} if(i < j) { swap(a[i], a[j]); if (a[i] == x) {p++; swap(a[p], a[i]);} if (a[j] == x) {q--; swap(a[q], a[j]);} } else break; } swap(a[i], a[right]); j = i-1; i=i+1; for (int k=left; k<=p; k++, j--) swap(a[k], a[j]); for (int k=right-1; k>=q; k--, i++) swap(a[i], a[k]); quickSort3Way(a, left, j); quickSort3Way(a, i, right); } }
4.测试代码:
#include <iostream> #include <stack> #include <ctime> using namespace std; // 产生(a,b)范围内的num个随机数 double* CreateRand(double a, double b, int num) { double *c; c = new double[num]; srand((unsigned int)time(NULL)); for (int i=0; i<num; i++) c[i] = (b-a)*(double)rand()/RAND_MAX + a; return c; } // 两路划分,获取中轴,轴左边数小于轴,轴右边数大于轴 double partition(double* a, int left, int right) { ... } // 1.递归快速排序,利用两路划分 void quickSort1(double* a, int left, int right) { ... } // 2.非递归快速排序,手动利用栈来存储每次分块快排的起始点,栈非空时循环获取中轴入栈 void quickSort2(double* a, int left, int right) { ... } // 3.利用三路划分实现递归快速排序 void quickSort3Way(double a[], int left, int right) { ... } void main() { double *a, *b, *c; int k=10000000; time_t start,end; a = CreateRand(0,1,k); b = CreateRand(0,1,k); c = CreateRand(0,1,k); start = clock(); quickSort1(a,0,k-1); end = clock(); cout<<"1.recursive "<<1.0*(end-start)/CLOCKS_PER_SEC<<" seconds"<<endl; start = clock(); quickSort2(b,0,k-1); end = clock(); cout<<"2.non-recursive "<<1.0*(end-start)/CLOCKS_PER_SEC<<" seconds"<<endl; start = clock(); quickSort3Way(c,0,k-1); end = clock(); cout<<"3.3 way "<<1.0*(end-start)/CLOCKS_PER_SEC<<" seconds"<<endl; cout<<endl; system("pause"); }
result:
1.recursive 1.951 seconds
2.non-recursive 2.224 seconds
3.3 way 1.677 seconds
结果可以看出非递归算法由于需要手动进行算法过程中的变量保存,执行效率低于递归算法;3路划分算法利用少量多余的交换减少了快排的复杂度,执行效率高于传统2路快排算法。