元类的介绍
请看位于下面网址的一篇文章,写的相当好。
http://blog.jobbole.com/21351/
实例补充
class Meta(type):
def __new__(meta, cls, parent, attr_dict):
res = super(Meta, meta).__new__(meta,cls, parent, attr_dict)
print('meta new stage, %s is %s, %s is %s' % (meta, type(meta), cls, type(cls)))
return res
def __init__(self,cls, parent, attr_dict):
super(Meta, self).__init__(cls,parent, attr_dict)
print('meta init stage, %s is %s, %s is %s' % (self, type(self), cls, type(cls)))
def __call__(self, *args, **kargs):
print('meta call stage, %s is %s' % (self, type(self)))
return super(Meta, self).__call__(*args, **kargs)
def decorate(cls):
print('decorate cls, %s is %s' % (cls, type(cls)))
return cls
@decorate
class A(metaclass=Meta):
def __new__(cls):
res = super(A, cls).__new__(cls)
print('A new stage, %s is %s' % (cls, type(cls)))
return res
def __init__(self):
super(A, self).__init__()
print('A init stage, %s is %s' % (self, type(self)))
def test(self):
pass
a=A()
print(a)
运行结果如下:
meta new stage, <class '__main__.Meta'> is <class 'type'>, A is <class 'str'>
meta init stage, <class '__main__.A'> is <class '__main__.Meta'>, A is <class 'str'>
decorate cls, <class '__main__.A'> is <class '__main__.Meta'>
meta call stage, <class '__main__.A'> is <class '__main__.Meta'>
A new stage, <class '__main__.A'> is <class '__main__.Meta'>
A init stage, <__main__.A object at 0x00000000022A74E0> is <class '__main__.A'>
<__main__.A object at 0x00000000022A74E0>
说明:
当我们自己创建一个类时,其实Python内部的运作机制如下:
- 看这个类中是否有设置元类,如果有,调用该元类进行初始化,如果没有,调用type进行初始化。
- 无论是我们自己定义的元类还是type,都有一个
__new__
方法,用来生成元类, 都有一个__init__
用来初始化类。 - 查看是否有类的装饰器,如果有的话,调用之。
其实,元类的__new__
和__init__
几乎什么都不做。
当我们创建一个类的实例时,其实Python内部的运作机制如下: - 调用元类的
__call__
方法,该方法会做两件事情:
- 调用类自身的
__new__
方法用来创建类(如果有的话),如果我们没有显示的定义它,那么会调用从object继承过来的__new__
方法。 - 调用类自身的
__init__
方法(如果有的话)来初始化得到实例,如果我们没有显示的定义它,那么会调用从object继承过来的__init__
方法。
其实,object的__init__
几乎什么都不做。
应用实例
由于我们经常在写类的内置拦截器方法时,少写下划线,或者出现拼写错误,从而怎么调试都不能发现问题所在,在浪费了很多时间以后才发现时犯的是多么低级的错误。
下面我写了这个元类来进行检查。
class AttrCheckMeta(type):
def __new__(meta, cls, parent, attr_dict):
import types
attrs_checking_list=['__init__', '__del__', '__call__', '__str__', '__repr__',
'__getattr__', '__setattr__', '__delattr__', '__getattribute__',
'__getitem__', '__setitem__', '__delitem__', '__iter__', '__next__',
'__contains__', '__get__', '__set__', '__delete__', '__lt__',
'__le__', '__gt__', '__ge__', '__eq__', '__add__', '__iadd__',
'__radd__', '__sub__', '__isub__', '__rsub__', '__mul__', '__imul__',
'__neg__', '__pos__', '__abs__', '__floordiv__', '__ifloordiv__',
'__truediv__', '__itruediv__', '__mod__', '__imod__', '__imod__',
'__pow__', '__ipow__', '__concat__', '__iconcat__', '__and__',
'__iand__', '__or__', '__ior__', '__xor__', '__ixor__', '__inv__',
'__invert__ ', '__lshift__', '__ilshift__', '__rshift__', '__irshift__ ',
'__bool__', '__len__', '__nonzero__', '__enter__', '__exit__',
'__new__', '__index__', '__oct__', '__hex__']
for attr,value in attr_dict.items():
#处理方法名前后都包含__,但是名字写错的情况。
if attr[:2]=='__' and attr[-2:]=='__' and isinstance(value, types.FunctionType):
if attr not in attrs_checking_list:
print('found problem function: %s' % attr)
#处理漏写后面__的情况,此时Python会把这个方法吗当成是需要扩张的方法。
elif attr.startswith('_'+cls+'__') and isinstance(value, types.FunctionType):
print('maybe has problem: %s' % attr)
return super(AttrCheckMeta, meta).__new__(meta,cls, parent, attr_dict)
def __init__(self,cls, parent, attr_dict):
super(AttrCheckMeta, self).__init__(cls,parent, attr_dict)
def __call__(self, *args, **kargs):
return super(AttrCheckMeta, self).__call__(*args, **kargs)
class A(metaclass=AttrCheckMeta):
def __new__(cls):
return super(A, cls).__new__(cls)
def __add(self, va, val):
pass
def __innit__(self):
super(A, self).__init__()
a=A()
故意写了两个错误在类A中,运行结果如下:
found problem function name: __innit__
maybe has problem: _A__add
当然,这个可以用装饰器来完成同样的任务,而且装饰器似乎更加直白、容易理解。
代码如下:
def check_ol(cls):
'''the overloading function name is easily to have spelling mistake.
It will be very hard to find the related mistakes, so i use this automethod to check
It will print the possible mistakes once found, will do nothing if passed'''
import types
attrs_checking_list=['__init__', '__del__', '__call__', '__str__', '__repr__',
'__getattr__', '__setattr__', '__delattr__', '__getattribute__',
'__getitem__', '__setitem__', '__delitem__', '__iter__', '__next__',
'__contains__', '__get__', '__set__', '__delete__', '__lt__',
'__le__', '__gt__', '__ge__', '__eq__', '__add__', '__iadd__',
'__radd__', '__sub__', '__isub__', '__rsub__', '__mul__', '__imul__',
'__neg__', '__pos__', '__abs__', '__floordiv__', '__ifloordiv__',
'__truediv__', '__itruediv__', '__mod__', '__imod__', '__imod__',
'__pow__', '__ipow__', '__concat__', '__iconcat__', '__and__',
'__iand__', '__or__', '__ior__', '__xor__', '__ixor__', '__inv__',
'__invert__ ', '__lshift__', '__ilshift__', '__rshift__', '__irshift__ ',
'__bool__', '__len__', '__nonzero__', '__enter__', '__exit__',
'__new__', '__index__', '__oct__', '__hex__']
for attr,value in cls.__dict__.items():
#处理方法名前后都包含__,但是名字写错的情况。
if attr[:2]=='__' and attr[-2:]=='__' and isinstance(value, types.FunctionType):
if attr not in attrs_checking_list:
print('found problem function name: %s' % attr)
#处理漏写后面__的情况,此时Python会把这个方法吗当成是需要扩张的方法。
elif attr.startswith('_'+cls.__name__+'__') and isinstance(value, types.FunctionType):
print('maybe has problem: %s' % attr)
return cls