• CentOS7服务器上部署深度/机器学习环境推荐首选anaconda3


    CentOS7服务器上部署深度/机器学习环境推荐首选anaconda3,亲测~~ 因为可以创建不同的环境版本或虚拟环境

    CentOS7服务器安装anaconda3后,CentOS7服务器开启后自动将anaconda3自身的root(或base)环境开启。
    用Xshell打开CentOS7服务器后,可以看见 (base)
    WARNING! The remote SSH server rejected X11 forwarding request.
    Last login: Tue Mar 12 22:11:51 2019 from 192.168.1.72
    (base) [jiangshan@localhost ~]$
    查看环境,发现anaconda3自身的root(或base)环境处于活动状态 ============== 默认开机启动(在指定的用户下)
    (base) [jiangshan@localhost ~]$ conda info -e
    # conda environments:
    #
    base * /home/jiangshan/anaconda3
    ( * 代表活动状态)
    ===================试验=======================================================
    (base) [jiangshan@localhost ~]$ source deactivate
    DeprecationWarning: 'source deactivate' is deprecated. Use 'conda deactivate'.
    [jiangshan@localhost ~]$
    ===================试验=======================================================

    # TenssorFlow目前还不支持Python 3.7,使用Anaconda3创建Python 3.6虚拟环境
    # 创建基于python 3.6 的tensorflow环境:
    (base) [jiangshan@localhost ~]$ conda create --name tensorflow python=3.6
    ==========================================================================
    ## Package Plan ##

    environment location: /home/jiangshan/anaconda3/envs/tensorflow

    added / updated specs:
    - python=3.6
    ==========================================================================
    查看创建的tensorflow环境
    (base) [jiangshan@localhost ~]$ conda info -e
    # conda environments:
    #
    base * /home/jiangshan/anaconda3
    tensorflow /home/jiangshan/anaconda3/envs/tensorflow

    已经创建tensorflow环境,暂未进入激活
    激活 tensorflow
    (base) [jiangshan@localhost ~]$ source activate tensorflow

    查看已激活的tensorflow环境
    (tensorflow) [jiangshan@localhost ~]$ conda info -e
    # conda environments:
    #
    base /home/jiangshan/anaconda3
    tensorflow * /home/jiangshan/anaconda3/envs/tensorflow 【有 * 号】

    在 tensorflow环境安装 tensorflow
    (tensorflow) [jiangshan@localhost ~]$ conda install tensorflow

    留意以下信息
    ==============================================================================================
    ## Package Plan ##

    environment location: /home/jiangshan/anaconda3/envs/tensorflow

    added / updated specs:
    - tensorflow

    The following NEW packages will be INSTALLED:

    absl-py anaconda/cloud/conda-forge/linux-64::absl-py-0.7.0-py36_1000
    astor anaconda/cloud/conda-forge/noarch::astor-0.7.1-py_0
    blas anaconda/pkgs/free/linux-64::blas-1.0-mkl
    c-ares anaconda/cloud/conda-forge/linux-64::c-ares-1.15.0-h14c3975_1001
    gast anaconda/cloud/conda-forge/noarch::gast-0.2.2-py_0
    grpcio pkgs/main/linux-64::grpcio-1.16.1-py36hf8bcb03_1
    libgfortran-ng anaconda/cloud/conda-forge/linux-64::libgfortran-ng-7.2.0-hdf63c60_3
    libprotobuf anaconda/cloud/conda-forge/linux-64::libprotobuf-3.7.0-hdbcaa40_1
    markdown anaconda/cloud/conda-forge/noarch::markdown-2.6.11-py_0
    mkl anaconda/pkgs/free/linux-64::mkl-2017.0.3-0
    numpy pkgs/main/linux-64::numpy-1.14.2-py36hdbf6ddf_0
    protobuf anaconda/cloud/conda-forge/linux-64::protobuf-3.7.0-py36hf484d3e_0
    six anaconda/cloud/conda-forge/linux-64::six-1.12.0-py36_1000
    tensorboard anaconda/cloud/conda-forge/linux-64::tensorboard-1.10.0-py36_0
    tensorflow anaconda/cloud/conda-forge/linux-64::tensorflow-1.10.0-py36_0
    termcolor anaconda/cloud/conda-forge/noarch::termcolor-1.1.0-py_2
    werkzeug anaconda/cloud/conda-forge/noarch::werkzeug-0.14.1-py_0
    ==============================================================================================

    # 查看虚拟环境已经安装的包
    (tensorflow) [jiangshan@localhost ~]$ conda list
    ==============================================================================================
    # packages in environment at /home/jiangshan/anaconda3/envs/tensorflow:
    #
    # Name Version Build Channel
    absl-py 0.7.0 py36_1000 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
    astor 0.7.1 py_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
    blas 1.0 mkl https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
    c-ares 1.15.0 h14c3975_1001 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
    ca-certificates 2019.3.9 hecc5488_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
    certifi 2019.3.9 py36_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
    gast 0.2.2 py_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
    grpcio 1.16.1 py36hf8bcb03_1 defaults
    libffi 3.2.1 hf484d3e_1005 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
    libgcc-ng 7.3.0 hdf63c60_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
    libgfortran-ng 7.2.0 hdf63c60_3 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
    libprotobuf 3.7.0 hdbcaa40_1 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
    libstdcxx-ng 7.3.0 hdf63c60_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
    markdown 2.6.11 py_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
    mkl 2017.0.3 0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
    ncurses 6.1 hf484d3e_1002 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
    numpy 1.14.2 py36hdbf6ddf_0 defaults
    openssl 1.1.1b h14c3975_1 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
    pip 19.0.3 py36_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
    protobuf 3.7.0 py36hf484d3e_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
    python 3.6.7 h381d211_1004 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
    readline 7.0 hf8c457e_1001 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
    setuptools 40.8.0 py36_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
    six 1.12.0 py36_1000 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
    sqlite 3.26.0 h67949de_1001 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
    tensorboard 1.10.0 py36_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
    tensorflow 1.10.0 py36_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
    termcolor 1.1.0 py_2 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
    tk 8.6.9 h84994c4_1000 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
    werkzeug 0.14.1 py_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
    wheel 0.33.1 py36_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
    xz 5.2.4 h14c3975_1001 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
    zlib 1.2.11 h14c3975_1004 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
    ==============================================================================================
    # 测试
    (tensorflow) [jiangshan@localhost ~]$ python
    Python 3.6.7 | packaged by conda-forge | (default, Feb 28 2019, 09:07:38)
    [GCC 7.3.0] on linux
    Type "help", "copyright", "credits" or "license" for more information.
    >>> import tensorflow as tf 【不报错就表示安装成功】
    >>> quit()

  • 相关阅读:
    Colidity-- NumberOfDiscIntersections
    Colidity--Triangle
    Colidity--CountDiv
    Colidity--MinAvgTwoSlice
    Colidity--GenomicRangeQuery
    Colidity--PassingCars
    操作系统--内存管理方式
    蓝桥杯练习系统—算法训练 P1102
    蓝桥杯练习系统—基础练习 完美的代价
    2n皇后问题
  • 原文地址:https://www.cnblogs.com/jeshy/p/10522379.html
Copyright © 2020-2023  润新知