• tensorboard的使用


     1 # -*- coding: utf-8 -*-
     2 """
     3 Created on: 2017/10/29
     4 @author   : Shawn
     5 function  :
     6 """
     7 import tensorflow as tf
     8 from tensorflow.examples.tutorials.mnist import input_data
     9 
    10 # 入口函数
    11 if __name__ == '__main__':
    12 
    13     # 载入数据
    14     mnist = input_data.read_data_sets("MNIST_data", one_hot=True)
    15 
    16     # 每个批次的大小
    17     batch_size= 100
    18 
    19     # 计算一共有多少个批次
    20     n_batch= mnist.train.num_examples // batch_size
    21 
    22     # 命名空间
    23     with tf.name_scope('input'):
    24         # 定义两个placeholder
    25         x = tf.placeholder(tf.float32, [None, 784], name='x-input')  # 输入层784个神经元
    26         y = tf.placeholder(tf.float32, [None, 10], name='y-input')  # 输出层10个神经元,10类
    27 
    28     W = tf.Variable(tf.zeros([784, 10]))
    29     b = tf.Variable(tf.zeros([10]))
    30     prediction = tf.nn.softmax(tf.matmul(x, W)+b)
    31 
    32     # 二次代价函数
    33     # loss = tf.reduce_mean(tf.square(y-prediction))
    34     loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=prediction))
    35 
    36     # 使用梯度下降法
    37     # train_step= tf.train.GradientDescentOptimizer(0.2).minimize(loss) # 0.2为学习率
    38     train_step = tf.train.AdamOptimizer(1e-1).minimize(loss)
    39 
    40     # 初始化变量
    41     init = tf.global_variables_initializer()
    42 
    43     # 结果存在一个bool类型的列表中
    44     correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(prediction, 1)) # agmax返回一维张量中最大值所在的位置
    45 
    46     # 求准确率
    47     accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    48 
    49     with tf.Session() as sess:
    50         sess.run(init)
    51         writer = tf.summary.FileWriter('logs/', sess.graph)
    52 
    53         # 把所有图片训练21次
    54         for epoch in range(1):
    55 
    56             # 训练n_batch批次
    57             for batch in range(n_batch):
    58                 batch_xs, batch_ys = mnist.train.next_batch(batch_size)
    59                 sess.run(train_step, feed_dict={x:batch_xs, y:batch_ys})
    60 
    61             acc = sess.run(accuracy, feed_dict={x:mnist.test.images, y:mnist.test.labels})
    62             print ("Iter " + str(epoch)+", Testing Accuracy" + str(acc))
    63 
    64     pass
    代码

    进入cmd:

    tensorboard --logdir=F:PycharmProjectsTFlearnsrclogs

    输出一个网址:

    用google浏览器或者火狐打开

  • 相关阅读:
    [SHOI2015]自动刷题机
    【教程】AI画放射图
    AI画圆角矩形
    极限运动:街头极限单车,不只是牛逼!
    DPK750针式打印机驱动,750u.dll下载
    文艺青年必看的Ⅹ部心理电影
    C语言程序设计-第2章 算法-程序的灵魂
    C语言程序设计-第1章 程序设计和C语言
    20151127笔记
    20151125小概念
  • 原文地址:https://www.cnblogs.com/jerrybaby/p/7756798.html
Copyright © 2020-2023  润新知