• Java:强引用,软引用,弱引用和虚引用


    (一) 强引用(StrongReference)
    强引用是使用最普遍的引用。如果一个对象具有强引用,那垃圾回收器绝不会回收它。如下:

      Object strongReference = new Object();

    当内存空间不足时,Java虚拟机宁愿抛出OutOfMemoryError错误,使程序异常终止,也不会靠随意回收具有强引用的对象来解决内存不足的问题。
    如果强引用对象不使用时,需要弱化从而使GC能够回收,如下:

    strongReference = null;

    显式地设置strongReference对象为null,或让其超出对象的生命周期范围,则gc认为该对象不存在引用,这时就可以回收这个对象。具体什么时候收集这要取决于GC算法。

      public void test() {
            Object strongReference = new Object();
            // 省略其他操作
        }

    在一个方法的内部有一个强引用,这个引用保存在Java栈中,而真正的引用内容(Object)保存在Java堆中。
    当这个方法运行完成后,就会退出方法栈,则引用对象的引用数为0,这个对象会被回收。
    但是如果这个strongReference是全局变量时,就需要在不用这个对象时赋值为null,因为强引用不会被垃圾回收。

    比如ArraryList类的clear方法中就是通过将引用赋值为null来实现清理工作的:

    public void clear() {
          modCount++;
     
          // Let gc do its work
          for (int i = 0; i < size; i++)
              elementData[i] = null;
     
          size = 0;
    }

    在ArrayList类中定义了一个私有的变量elementData数组,在调用方法清空数组时可以看到为每个数组内容赋值为null。不同于elementData=null,强引用仍然存在,避免在后续调用 add()等方法添加元素时进行重新的内存分配。使用如clear()方法中释放内存的方法对数组中存放的引用类型特别适用,这样就可以及时释放内存。

    二、软引用
    软引用是用来描述一些有用但并不是必需的对象,在Java中用java.lang.ref.SoftReference类来表示。对于软引用关联着的对象,只有在内存不足的时候JVM才会回收该对象。因此,这一点可以很好地用来解决OOM的问题,并且这个特性很适合用来实现缓存:软引用可用来实现内存敏感的高速缓存。比如网页缓存、图片缓存等。
    软引用可以和一个引用队列(ReferenceQueue)联合使用,如果软引用所引用的对象被JVM回收,这个软引用就会被加入到与之关联的引用队列中。

    // 强引用
    String strongReference = new String("abc");
    // 软引用
    String str = new String("abc");
    SoftReference<String> softReference = new SoftReference<String>(str);

    软引用可以和一个引用队列(ReferenceQueue)联合使用。如果软引用所引用对象被垃圾回收,JAVA虚拟机就会把这个软引用加入到与之关联的引用队列中。

        ReferenceQueue<String> referenceQueue = new ReferenceQueue<>();
        String str = new String("abc");
        SoftReference<String> softReference = new SoftReference<>(str, referenceQueue);
    
        str = null;
        // Notify GC
        System.gc();
    
        System.out.println(softReference.get()); // abc
    
        Reference<? extends String> reference = referenceQueue.poll();
        System.out.println(reference); //null

    注意:软引用对象是在jvm内存不够的时候才会被回收,我们调用System.gc()方法只是起通知作用,JVM什么时候扫描回收对象是JVM自己的状态决定的。就算扫描到软引用对象也不一定会回收它,只有内存不够的时候才会回收。
    当内存不足时,JVM首先将软引用中的对象引用置为null,然后通知垃圾回收器进行回收:

     if(JVM内存不足) {
            // 将软引用中的对象引用置为null
            str = null;
            // 通知垃圾回收器进行回收
            System.gc();
        }

    也就是说,垃圾收集线程会在虚拟机抛出OutOfMemoryError之前回收软引用对象,而且虚拟机会尽可能优先回收长时间闲置不用的软引用对象。对那些刚构建的或刚使用过的“较新的”软对象会被虚拟机尽可能保留,这就是引入引用队列ReferenceQueue的原因。
    应用场景:
    浏览器的后退按钮。按后退时,这个后退时显示的网页内容是重新进行请求还是从缓存中取出呢?这就要看具体的实现策略了。

    • 如果一个网页在浏览结束时就进行内容的回收,则按后退查看前面浏览过的页面时,需要重新构建;
    • 如果将浏览过的网页存储到内存中会造成内存的大量浪费,甚至会造成内存溢出。

    这时候就可以使用软引用,很好的解决了实际的问题:

     // 获取浏览器对象进行浏览
        Browser browser = new Browser();
        // 从后台程序加载浏览页面
        BrowserPage page = browser.getPage();
        // 将浏览完毕的页面置为软引用
        SoftReference softReference = new SoftReference(page);
    
        // 回退或者再次浏览此页面时
        if(softReference.get() != null) {
            // 内存充足,还没有被回收器回收,直接获取缓存
            page = softReference.get();
        } else {
            // 内存不足,软引用的对象已经回收
            page = browser.getPage();
            // 重新构建软引用
            softReference = new SoftReference(page);
        }

    (三) 弱引用(WeakReference)
    弱引用与软引用的区别在于:只具有弱引用的对象拥有更短暂的生命周期。在垃圾回收器线程扫描它所管辖的内存区域的过程中,一旦发现了只具有弱引用的对象,不管当前内存空间足够与否,都会回收它的内存。不过,由于垃圾回收器是一个优先级很低的线程,因此不一定会很快发现那些只具有弱引用的对象。

        String str = new String("abc");
        WeakReference<String> weakReference = new WeakReference<>(str);
        str = null;

    JVM首先将软引用中的对象引用置为null,然后通知垃圾回收器进行回收:

        str = null;
        System.gc();

    注意:如果一个对象是偶尔(很少)的使用,并且希望在使用时随时就能获取到,但又不想影响此对象的垃圾收集,那么你应该用Weak Reference来记住此对象。
    下面的代码会让一个弱引用再次变为一个强引用:

        String str = new String("abc");
        WeakReference<String> weakReference = new WeakReference<>(str);
        // 弱引用转强引用
        String strongReference = weakReference.get();

    同样,弱引用可以和一个引用队列(ReferenceQueue)联合使用,如果弱引用所引用的对象被垃圾回收,Java虚拟机就会把这个弱引用加入到与之关联的引用队列中。
    简单测试:
    GCTarget.java

    public class GCTarget {
        // 对象的ID
        public String id;
    
        // 占用内存空间
        byte[] buffer = new byte[1024];
    
        public GCTarget(String id) {
            this.id = id;
        }
    
        protected void finalize() throws Throwable {
            // 执行垃圾回收时打印显示对象ID
            System.out.println("Finalizing GCTarget, id is : " + id);
        }
    }

    GCTargetWeakReference.java

    public class GCTargetWeakReference extends WeakReference<GCTarget> {
        // 弱引用的ID
        public String id;
    
        public GCTargetWeakReference(GCTarget gcTarget,
                  ReferenceQueue<? super GCTarget> queue) {
            super(gcTarget, queue);
            this.id = gcTarget.id;
        }
    
        protected void finalize() {
            System.out.println("Finalizing GCTargetWeakReference " + id);
        }
    }

    WeakReferenceTest.java

    public class WeakReferenceTest {
        // 弱引用队列
        private final static ReferenceQueue<GCTarget> REFERENCE_QUEUE = new ReferenceQueue<>();
    
        public static void main(String[] args) {
            LinkedList<GCTargetWeakReference> gcTargetList = new LinkedList<>();
    
            // 创建弱引用的对象,依次加入链表中
            for (int i = 0; i < 5; i++) {
                GCTarget gcTarget = new GCTarget(String.valueOf(i));
                GCTargetWeakReference weakReference = new GCTargetWeakReference(gcTarget,
                    REFERENCE_QUEUE);
                gcTargetList.add(weakReference);
    
                System.out.println("Just created GCTargetWeakReference obj: " +
                    gcTargetList.getLast());
            }
    
            // 通知GC进行垃圾回收
            System.gc();
    
            try {
                // 休息几分钟,等待上面的垃圾回收线程运行完成
                Thread.sleep(6000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
    
            // 检查关联的引用队列是否为空
            Reference<? extends GCTarget> reference;
            while((reference = REFERENCE_QUEUE.poll()) != null) {
                if(reference instanceof GCTargetWeakReference) {
                    System.out.println("In queue, id is: " +
                        ((GCTargetWeakReference) (reference)).id);
                }
            }
        }
    }

    可见WeakReference对象的生命周期基本由垃圾回收器决定,一旦垃圾回收线程发现了弱引用对象,在下一次GC过程中就会对其进行回收。

    (四) 虚引用(PhantomReference)
    虚引用顾名思义,就是形同虚设。与其他几种引用都不同,虚引用并不会决定对象的生命周期。如果一个对象仅持有虚引用,那么它就和没有任何引用一样,在任何时候都可能被垃圾回收器回收。
    应用场景:
    虚引用主要用来跟踪对象被垃圾回收器回收的活动。
    虚引用与软引用和弱引用的一个区别在于:
    虚引用必须和引用队列(ReferenceQueue)联合使用。当垃圾回收器准备回收一个对象时,如果发现它还有虚引用,就会在回收对象的内存之前,把这个虚引用加入到与之关联的引用队列中。

        String str = new String("abc");
        ReferenceQueue queue = new ReferenceQueue();
        // 创建虚引用,要求必须与一个引用队列关联
        PhantomReference pr = new PhantomReference(str, queue);

    程序可以通过判断引用队列中是否已经加入了虚引用,来了解被引用的对象是否将要进行垃圾回收。如果程序发现某个虚引用已经被加入到引用队列,那么就可以在所引用的对象的内存被回收之前采取必要的行动。
    总结
    Java中4种引用的级别和强度由高到低依次为:强引用 -> 软引用 -> 弱引用 -> 虚引用
    当垃圾回收器回收时,某些对象会被回收,某些不会被回收。垃圾回收器会从根对象Object来标记存活的对象,然后将某些不可达的对象和一些引用的对象进行回收。
    通过表格来说明一下,如下: 

    引用类型被垃圾回收时间用途生存时间
    强引用 从来不会 对象的一般状态 JVM停止运行时终止
    软引用 当内存不足时 对象缓存 内存不足时终止
    弱引用 正常垃圾回收时 对象缓存 垃圾回收后终止
    虚引用 正常垃圾回收时 跟踪对象的垃圾回收 垃圾回收后终止
    郭慕荣博客园
  • 相关阅读:
    HDU 1813 Escape from Tetris
    BZOJ 2276 Temperature
    BZOJ 4499 线性函数
    BZOJ 3131 淘金
    HDU 5738 Eureka
    POJ 2409 Let it Bead
    POJ 1286 Necklace of Beads
    POJ 1696 Space Ant
    Fox And Jumping
    Recover the String
  • 原文地址:https://www.cnblogs.com/jelly12345/p/15020728.html
Copyright © 2020-2023  润新知