• Spring Cloud Ribbon的原理-负载均衡策略


     在前两篇《Spring Cloud Ribbon的原理》《Spring Cloud Ribbon的原理-负载均衡器》中,整理了Ribbon如何通过负载均衡拦截器植入RestTemplate,以及调用负载均衡器获取服务列表,如何过滤,如何更新等的处理过程。

    因为,负载均衡器最终是调用负载均衡策略的choose方法来选择一个服务,所以这一篇,整理Ribbon的负载均衡策略。

    策略类

    • RandomRule
    • RoundRobinRule
    • RetryRule
    • WeightedResponseTimeRule
    • ClientConfigEnabledRoundRobinRule
    • BestAvailableRule
    • PredicateBasedRule
    • AvailabilityFilteringRule
    • ZoneAvoidanceRule

    类继承关系

    RandomRule
    随机选取负载均衡策略。
    choose方法中,通过随机Random对象,在所有服务实例数量中随机找一个服务的索引号,然后从上线的服务中获取对应的服务。
    这时候,很可能会有不在线的服务,就有可能从上线的服务中获取不到,那么休息会儿再获取知道随机获取到一个上线的服务为止。

     1 public class RandomRule extends AbstractLoadBalancerRule {
     2 
     3     /**
     4      * Randomly choose from all living servers
     5      */
     6     @edu.umd.cs.findbugs.annotations.SuppressWarnings(value = "RCN_REDUNDANT_NULLCHECK_OF_NULL_VALUE")
     7     public Server choose(ILoadBalancer lb, Object key) {
     8         if (lb == null) {
     9             return null;
    10         }
    11         Server server = null;
    12 
    13         while (server == null) {
    14             if (Thread.interrupted()) {
    15                 return null;
    16             }
    17             List<Server> upList = lb.getReachableServers();
    18             List<Server> allList = lb.getAllServers();
    19 
    20             int serverCount = allList.size();
    21             if (serverCount == 0) {
    22                 /*
    23                  * No servers. End regardless of pass, because subsequent passes
    24                  * only get more restrictive.
    25                  */
    26                 return null;
    27             }
    28 
    29             int index = chooseRandomInt(serverCount);
    30             server = upList.get(index);
    31 
    32             if (server == null) {
    33                 /*
    34                  * The only time this should happen is if the server list were
    35                  * somehow trimmed. This is a transient condition. Retry after
    36                  * yielding.
    37                  */
    38                 Thread.yield();
    39                 continue;
    40             }
    41 
    42             if (server.isAlive()) {
    43                 return (server);
    44             }
    45 
    46             // Shouldn't actually happen.. but must be transient or a bug.
    47             server = null;
    48             Thread.yield();
    49         }
    50 
    51         return server;
    52 
    53     }
    54 
    55     protected int chooseRandomInt(int serverCount) {
    56         return ThreadLocalRandom.current().nextInt(serverCount);
    57     }
    58 
    59     @Override
    60     public Server choose(Object key) {
    61         return choose(getLoadBalancer(), key);
    62     }
    63 
    64     @Override
    65     public void initWithNiwsConfig(IClientConfig clientConfig) {
    66         // TODO Auto-generated method stub
    67         
    68     }

    RoundRobinRule
    线性轮询负载均衡策略。
    choose方法中,通过incrementAndGetModulo方法以线性轮询方式获取服务。
    在incrementAndGetModulo中,实际上在类中维护了一个原子性的nextServerCyclicCounter成员变量作为当前服务的索引号,每次在所有服务数量的限制下,就是将服务的索引号加1,到达服务数量限制时再从头开始。

     1 public class RoundRobinRule extends AbstractLoadBalancerRule {
     2 
     3     private AtomicInteger nextServerCyclicCounter;
     4     private static final boolean AVAILABLE_ONLY_SERVERS = true;
     5     private static final boolean ALL_SERVERS = false;
     6 
     7     private static Logger log = LoggerFactory.getLogger(RoundRobinRule.class);
     8 
     9     public RoundRobinRule() {
    10         nextServerCyclicCounter = new AtomicInteger(0);
    11     }
    12 
    13     public RoundRobinRule(ILoadBalancer lb) {
    14         this();
    15         setLoadBalancer(lb);
    16     }
    17 
    18     public Server choose(ILoadBalancer lb, Object key) {
    19         if (lb == null) {
    20             log.warn("no load balancer");
    21             return null;
    22         }
    23 
    24         Server server = null;
    25         int count = 0;
    26         while (server == null && count++ < 10) {
    27             List<Server> reachableServers = lb.getReachableServers();
    28             List<Server> allServers = lb.getAllServers();
    29             int upCount = reachableServers.size();
    30             int serverCount = allServers.size();
    31 
    32             if ((upCount == 0) || (serverCount == 0)) {
    33                 log.warn("No up servers available from load balancer: " + lb);
    34                 return null;
    35             }
    36 
    37             int nextServerIndex = incrementAndGetModulo(serverCount);
    38             server = allServers.get(nextServerIndex);
    39 
    40             if (server == null) {
    41                 /* Transient. */
    42                 Thread.yield();
    43                 continue;
    44             }
    45 
    46             if (server.isAlive() && (server.isReadyToServe())) {
    47                 return (server);
    48             }
    49 
    50             // Next.
    51             server = null;
    52         }
    53 
    54         if (count >= 10) {
    55             log.warn("No available alive servers after 10 tries from load balancer: "
    56                     + lb);
    57         }
    58         return server;
    59     }
    60 
    61     /**
    62      * Inspired by the implementation of {@link AtomicInteger#incrementAndGet()}.
    63      *
    64      * @param modulo The modulo to bound the value of the counter.
    65      * @return The next value.
    66      */
    67     private int incrementAndGetModulo(int modulo) {
    68         for (;;) {
    69             int current = nextServerCyclicCounter.get();
    70             int next = (current + 1) % modulo;
    71             if (nextServerCyclicCounter.compareAndSet(current, next))
    72                 return next;
    73         }
    74     }
    75 
    76     @Override
    77     public Server choose(Object key) {
    78         return choose(getLoadBalancer(), key);
    79     }
    80 
    81     @Override
    82     public void initWithNiwsConfig(IClientConfig clientConfig) {
    83     }
    84 }

    WeightedResponseTimeRule
    响应时间作为选取权重的负载均衡策略。其含义就是,响应时间越短的服务被选中的可能性大。继承自RoundRobinRule类。

      1 public class WeightedResponseTimeRule extends RoundRobinRule {
      2 
      3     public static final IClientConfigKey<Integer> WEIGHT_TASK_TIMER_INTERVAL_CONFIG_KEY = new IClientConfigKey<Integer>() {
      4         @Override
      5         public String key() {
      6             return "ServerWeightTaskTimerInterval";
      7         }
      8         
      9         @Override
     10         public String toString() {
     11             return key();
     12         }
     13 
     14         @Override
     15         public Class<Integer> type() {
     16             return Integer.class;
     17         }
     18     };
     19     
     20     public static final int DEFAULT_TIMER_INTERVAL = 30 * 1000;
     21     
     22     private int serverWeightTaskTimerInterval = DEFAULT_TIMER_INTERVAL;
     23 
     24     private static final Logger logger = LoggerFactory.getLogger(WeightedResponseTimeRule.class);
     25     
     26     // holds the accumulated weight from index 0 to current index
     27     // for example, element at index 2 holds the sum of weight of servers from 0 to 2
     28     private volatile List<Double> accumulatedWeights = new ArrayList<Double>();
     29     
     30 
     31     private final Random random = new Random();
     32 
     33     protected Timer serverWeightTimer = null;
     34 
     35     protected AtomicBoolean serverWeightAssignmentInProgress = new AtomicBoolean(false);
     36 
     37     String name = "unknown";
     38 
     39     public WeightedResponseTimeRule() {
     40         super();
     41     }
     42 
     43     public WeightedResponseTimeRule(ILoadBalancer lb) {
     44         super(lb);
     45     }
     46     
     47     @Override
     48     public void setLoadBalancer(ILoadBalancer lb) {
     49         super.setLoadBalancer(lb);
     50         if (lb instanceof BaseLoadBalancer) {
     51             name = ((BaseLoadBalancer) lb).getName();
     52         }
     53         initialize(lb);
     54     }
     55 
     56     void initialize(ILoadBalancer lb) {        
     57         if (serverWeightTimer != null) {
     58             serverWeightTimer.cancel();
     59         }
     60         serverWeightTimer = new Timer("NFLoadBalancer-serverWeightTimer-"
     61                 + name, true);
     62         serverWeightTimer.schedule(new DynamicServerWeightTask(), 0,
     63                 serverWeightTaskTimerInterval);
     64         // do a initial run
     65         ServerWeight sw = new ServerWeight();
     66         sw.maintainWeights();
     67 
     68         Runtime.getRuntime().addShutdownHook(new Thread(new Runnable() {
     69             public void run() {
     70                 logger
     71                         .info("Stopping NFLoadBalancer-serverWeightTimer-"
     72                                 + name);
     73                 serverWeightTimer.cancel();
     74             }
     75         }));
     76     }
     77 
     78     public void shutdown() {
     79         if (serverWeightTimer != null) {
     80             logger.info("Stopping NFLoadBalancer-serverWeightTimer-" + name);
     81             serverWeightTimer.cancel();
     82         }
     83     }
     84 
     85     List<Double> getAccumulatedWeights() {
     86         return Collections.unmodifiableList(accumulatedWeights);
     87     }
     88 
     89     @edu.umd.cs.findbugs.annotations.SuppressWarnings(value = "RCN_REDUNDANT_NULLCHECK_OF_NULL_VALUE")
     90     @Override
     91     public Server choose(ILoadBalancer lb, Object key) {
     92         if (lb == null) {
     93             return null;
     94         }
     95         Server server = null;
     96 
     97         while (server == null) {
     98             // get hold of the current reference in case it is changed from the other thread
     99             List<Double> currentWeights = accumulatedWeights;
    100             if (Thread.interrupted()) {
    101                 return null;
    102             }
    103             List<Server> allList = lb.getAllServers();
    104 
    105             int serverCount = allList.size();
    106 
    107             if (serverCount == 0) {
    108                 return null;
    109             }
    110 
    111             int serverIndex = 0;
    112 
    113             // last one in the list is the sum of all weights
    114             double maxTotalWeight = currentWeights.size() == 0 ? 0 : currentWeights.get(currentWeights.size() - 1); 
    115             // No server has been hit yet and total weight is not initialized
    116             // fallback to use round robin
    117             if (maxTotalWeight < 0.001d || serverCount != currentWeights.size()) {
    118                 server =  super.choose(getLoadBalancer(), key);
    119                 if(server == null) {
    120                     return server;
    121                 }
    122             } else {
    123                 // generate a random weight between 0 (inclusive) to maxTotalWeight (exclusive)
    124                 double randomWeight = random.nextDouble() * maxTotalWeight;
    125                 // pick the server index based on the randomIndex
    126                 int n = 0;
    127                 for (Double d : currentWeights) {
    128                     if (d >= randomWeight) {
    129                         serverIndex = n;
    130                         break;
    131                     } else {
    132                         n++;
    133                     }
    134                 }
    135 
    136                 server = allList.get(serverIndex);
    137             }
    138 
    139             if (server == null) {
    140                 /* Transient. */
    141                 Thread.yield();
    142                 continue;
    143             }
    144 
    145             if (server.isAlive()) {
    146                 return (server);
    147             }
    148 
    149             // Next.
    150             server = null;
    151         }
    152         return server;
    153     }
    154 
    155     class DynamicServerWeightTask extends TimerTask {
    156         public void run() {
    157             ServerWeight serverWeight = new ServerWeight();
    158             try {
    159                 serverWeight.maintainWeights();
    160             } catch (Exception e) {
    161                 logger.error("Error running DynamicServerWeightTask for {}", name, e);
    162             }
    163         }
    164     }
    165 
    166     class ServerWeight {
    167 
    168         public void maintainWeights() {
    169             ILoadBalancer lb = getLoadBalancer();
    170             if (lb == null) {
    171                 return;
    172             }
    173             
    174             if (!serverWeightAssignmentInProgress.compareAndSet(false,  true))  {
    175                 return; 
    176             }
    177             
    178             try {
    179                 logger.info("Weight adjusting job started");
    180                 AbstractLoadBalancer nlb = (AbstractLoadBalancer) lb;
    181                 LoadBalancerStats stats = nlb.getLoadBalancerStats();
    182                 if (stats == null) {
    183                     // no statistics, nothing to do
    184                     return;
    185                 }
    186                 double totalResponseTime = 0;
    187                 // find maximal 95% response time
    188                 for (Server server : nlb.getAllServers()) {
    189                     // this will automatically load the stats if not in cache
    190                     ServerStats ss = stats.getSingleServerStat(server);
    191                     totalResponseTime += ss.getResponseTimeAvg();
    192                 }
    193                 // weight for each server is (sum of responseTime of all servers - responseTime)
    194                 // so that the longer the response time, the less the weight and the less likely to be chosen
    195                 Double weightSoFar = 0.0;
    196                 
    197                 // create new list and hot swap the reference
    198                 List<Double> finalWeights = new ArrayList<Double>();
    199                 for (Server server : nlb.getAllServers()) {
    200                     ServerStats ss = stats.getSingleServerStat(server);
    201                     double weight = totalResponseTime - ss.getResponseTimeAvg();
    202                     weightSoFar += weight;
    203                     finalWeights.add(weightSoFar);   
    204                 }
    205                 setWeights(finalWeights);
    206             } catch (Exception e) {
    207                 logger.error("Error calculating server weights", e);
    208             } finally {
    209                 serverWeightAssignmentInProgress.set(false);
    210             }
    211 
    212         }
    213     }
    214 
    215     void setWeights(List<Double> weights) {
    216         this.accumulatedWeights = weights;
    217     }
    218 
    219     @Override
    220     public void initWithNiwsConfig(IClientConfig clientConfig) {
    221         super.initWithNiwsConfig(clientConfig);
    222         serverWeightTaskTimerInterval = clientConfig.get(WEIGHT_TASK_TIMER_INTERVAL_CONFIG_KEY, DEFAULT_TIMER_INTERVAL);
    223     }
    224 
    225 }

    既然是按照响应时间权重来选择服务,那么先整理一下权重算法是怎么做的。
    观察initialize方法,启动了定时器定时执行DynamicServerWeightTask的run来调用计算服务权重,计算权重是通过内部类ServerWeight的maintainWeights方法来进行。
    整理一下maintainWeights方法的逻辑,里面有两个for循环,第一个for循环拿到所有服务的总响应时间,第二个for循环计算每个服务的权重以及总权重。
    第一个for循环。
    假设有4个服务,每个服务的响应时间(ms):

    A: 200
    B: 500
    C: 30
    D: 1200

    总响应时间:
    200+500+30+1200=1930ms
    接下来第二个for循环,计算每个服务的权重。
    服务的权重=总响应时间-服务自身的响应时间:
    A: 1930-200=1730
    B: 1930-500=1430
    C: 1930-30=1900
    D: 1930-1200=730

    总权重:
    1730+1430+1900+730=5790
    结果就是响应时间越短的服务,它的权重就越大。

    再看一下choose方法。重点在while循环的第3个if这里。首先如果判定没有服务或者权重还没计算出来时,会采用父类RoundRobinRule以线性轮询的方式选择服务器。
    有服务,有权重计算结果后,就是以总权重值为限制,拿到一个随机数,然后看随机数落到哪个区间,就选择对应的服务。
    所以选取服务的结论就是:响应时间越短的服务,它的权重就越大,被选中的可能性就越大。

     还有其他的负载均衡选择策略,下面就不一一列举了。

  • 相关阅读:
    EasyARM-iMX283A的Linux 开发环境构建
    linux指令tar笔记
    使用cuteFTP与虚拟机交互文件---安装ftp服务
    SecureCRT显示乱码的解决办法
    【转】简明 Vim 练级攻略
    图像识别___YUV学习手记
    一个简易的软件定时器
    OV7670配置和调试小结
    linux驱动开发( 五) 字符设备驱动框架的填充file_operations结构体中的操作函数(read write llseek unlocked_ioctl)
    hash-1.hash表和hash算法
  • 原文地址:https://www.cnblogs.com/jelly12345/p/14291801.html
Copyright © 2020-2023  润新知