• csuoj 1116: Kingdoms


    http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1116

    1116: Kingdoms

    Time Limit: 3 Sec  Memory Limit: 64 MB
    Submit: 293  Solved: 82
    [Submit][Status][Web Board]

    Description

    A kingdom has n cities numbered 1 to n, and some bidirectional roads connecting cities. The capital is always city 1.
    After a war, all the roads of the kingdom are destroyed. The king wants to rebuild some of the roads to connect the cities, but unfortunately, the kingdom is running out of money. The total cost of rebuilding roads should not exceed K.
    Given the list of m roads that can be rebuilt (other roads are severely damaged and cannot be rebuilt), the king decided to maximize the total population in the capital and all other cities that are connected (directly or indirectly) with the capital (we call it "accessible population"), can you help him?

    Input

    The first line of input contains a single integer T (T<=20), the number of test cases. 
    Each test case begins with three integers n(4<=n<=16), m(1<=m<=100) and K(1<=K<=100,000). 
    The second line contains n positive integers pi (1<=pi<=10,000), the population of each city. 
    Each of the following m lines contains three positive integers u, v, c (1<=u,v<=n, 1<=c<=1000), representing a destroyed road connecting city u and v, whose rebuilding cost is c. 
    Note that two cities can be directly connected by more than one road, but a road cannot directly connect a city and itself.

    Output

    For each test case, print the maximal accessible population.

    Sample Input

    2
    4 6 6
    500 400 300 200
    1 2 4
    1 3 3
    1 4 2
    4 3 5
    2 4 6
    3 2 7
    4 6 5
    500 400 300 200
    1 2 4
    1 3 3
    1 4 2
    4 3 5
    2 4 6
    3 2 7
    

    Sample Output

    1100
    1000
    

    HINT

     

    Source

    湖南省第八届大学生计算机程序设计竞赛

    分析;

    此题可以先确定1是在点集里,然后暴力枚举其它城市是否要连,对每个枚举的结果求最小生成树,选出符合条件的最优解。

    AC代码:

      1 #include <iostream>
      2 #include<cstdio>
      3 #include<cstring>
      4 using namespace std;
      5 const int maxn=0x3f3f3f3f;
      6 int n,m,k;
      7 int population[20];
      8 int Map[20][20];
      9 bool exits[20];
     10 bool vis[20];
     11 int d[20];
     12 int p;
     13 void init(int n)
     14 {
     15     for(int i=1; i<=n; i++)
     16     {
     17         for(int j=1; j<=n; j++)
     18         {
     19             Map[i][j]=(i!=j?maxn:0);
     20         }
     21     }
     22 }
     23 int prim()
     24 {
     25     int sum=0;
     26     memset(vis,false,sizeof(vis));
     27     for(int i=1; i<=n; i++)
     28     {
     29         d[i]=Map[1][i];
     30     }
     31     vis[1]=true;
     32     for(int i=2; i<=n; i++)
     33     {
     34 
     35         int min=maxn,mini;
     36         for(int j=1; j<=n; j++)
     37         {
     38             if(!vis[j]&&exits[j]&&d[j]<min)
     39             {
     40                 min=d[j];
     41                 mini=j;
     42             }
     43         }
     44         if(min==maxn) break;
     45         sum+=min;
     46         vis[mini]=true;
     47         for(int k=1; k<=n; k++)
     48         {
     49             if(exits[k]&&!vis[k]&&Map[mini][k]<d[k])
     50             {
     51                 d[k]=Map[mini][k];
     52             }
     53         }
     54 
     55 
     56     }
     57     int cnt1=0,cnt2=0;
     58     for(int i=1;i<=n;i++){
     59         cnt1+=exits[i];
     60     }
     61     for(int i=1;i<=n;i++){
     62         cnt2+=vis[i];
     63     }
     64     if(cnt1==cnt2)
     65     return sum;
     66     else return maxn;
     67 
     68 }
     69 
     70 void dfs(int cur)
     71 {
     72     if(cur>n)
     73     {
     74         int pr=prim();
     75         int temp=0;
     76         if(pr<=k)
     77         {
     78             for(int i=1; i<=n; i++)
     79             {
     80                 if(exits[i])
     81                 {
     82                     temp+=population[i];
     83                 }
     84             }
     85             if(temp>p) p=temp;
     86         }
     87         return ;
     88     }
     89     for(int i=0; i<2; i++)
     90     {
     91         exits[cur]=i==1?true:false;
     92         dfs(cur+1);
     93     }
     94 }
     95 int main()
     96 {
     97     int t;
     98     scanf("%d",&t);
     99     while(t--)
    100     {
    101         scanf("%d%d%d",&n,&m,&k);
    102         for(int i=1; i<=n; i++)
    103         {
    104             scanf("%d",&population[i]);
    105         }
    106         init(n);
    107         for(int i=0; i<m; i++)
    108         {
    109             int from,to,c;
    110             scanf("%d%d%d",&from,&to,&c);
    111             if(Map[from][to]>c)
    112             {
    113                 Map[from][to]=Map[to][from]=c;
    114             }
    115         }
    116         p=population[1];
    117         exits[1]=true;
    118         dfs(2);
    119         printf("%d
    ",p);
    120     }
    121     return 0;
    122 }
    View Code
  • 相关阅读:
    LeetCode208 实现 Trie (前缀树)
    LeetCode289 生命游戏(模拟)
    LeetCode560 和为 K 的子数组
    LeetCode673 最长递增子序列的个数
    LeetCode31 下一个排列
    LeetCode926 将字符串翻转到单调递增
    LeetCode135 分发糖果
    LeetCode810 黑板异或游戏
    npm发布和修改详细教程
    不同的子序列问题I
  • 原文地址:https://www.cnblogs.com/jeff-wgc/p/4475750.html
Copyright © 2020-2023  润新知